This article gives a semiclassical description of nucleonic propagation through codimension two crossings of electronic energy levels. Codimension two crossings are the simplest energy level crossings, which affect the Born–Oppenheimer approximation in the zeroth order term. The model we study is a two-level Schrödinger equation with a Laplacian as kinetic operator and a matrix-valued linear potential, whose eigenvalues cross, if the two nucleonic coordinates equal zero. We discuss the case of well-localized initial data and obtain a description of the wavefunction’s two-scaled Wigner measure and of the weak limit of its position density, which is valid globally in time.

1.
Colin de Verdière
,
Y.
,
Lombardi
,
M.
, and
Pollet
,
J.
, “
The microlocal Landau-Zeuer formula
,”
Ann. I.H.P. Phys. Theor.
71
,
95
127
(
1999
).
2.
Dimassi, M. and Sjöstrand, J., Spectral Asymptotics in the Semi-Classical Limit, (Cambridge University Press, Cambridge, 1999).
3.
Exner
,
P.
and
Joye
,
A.
, “
Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder
,”
J. Math. Phys.
42
,
4707
4738
(
2001
).
4.
Fermanian Kammerer
,
C.
, “
Mesures semi-classiques deux-microlocales
,”
C. R. Acad. Sci. Paris
331
,
Ser
:
1
515
518
(
2000
).
5.
Fermanian Kammerer, C., “A non-commutative Landau-Zener formula, prépublication de l’Université de Cergy-Pontoise,” (2002).
6.
Fermanian Kammerer
,
C.
and
Gérard
,
P.
, “
Mesures semi-classiques et croisements de modes
,”
Bull. S. M. F.
130
,
123
168
(
2002
).
7.
Gérard
,
P.
, “
Microlocal defect measures
,”
Commun. Partial Differ. Equ.
16
,
1761
1794
(
1991
).
8.
Gérard, P., “Mesures semi-classiques et ondes de Bloch,” Exposé de l’Ecole Polytechnique, E.D.P., Exposé NoXVI (1991).
9.
Gérard
,
P.
and
Leichtnam
,
E.
, “
Ergodic properties of eigenfunctions for the dirichlet problem
,”
Duke Math. J.
71
,
559
607
(
1993
).
10.
Gérard
,
P.
,
Markowich
,
P. A.
,
Mauser
,
N. J.
, and
Poupaud
,
F.
, “
Homogenization limits and Wigner transforms
,”
Commun. Pure Appl. Math.
50
,
323
379
(
1997
).
11.
Hagedorn
,
G. A.
, “
Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps
,”
Commun. Math. Phys.
136
,
433
449
(
1991
).
12.
Hagedorn
,
G. A.
, “
Molecular propagation through electron energy level crossings
,”
Mem. Am. Math. Soc.
111
,
536
(
1994
).
13.
Hagedorn
,
G. A.
and
Joye
,
A.
, “
Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
,”
Ann. I.H.P. Phys. Theor.
68
,
85
134
(
1998
).
14.
Hagedorn
,
G. A.
and
Joye
,
A.
, “
Molecular propagation through small avoided crossings of electron energy levels
,”
Rev. Math. Phys.
11
,
41
101
(
1999
).
15.
Joye
,
A.
, “
Proof of the Landau-Zener formula
,”
Asymptotic Anal.
9
,
209
258
(
1994
).
16.
Landau, L., Collected Papers of L. Landau (Pergamon, New York, 1965).
17.
Lions
,
P.-L.
and
Paul
,
T.
, “
Sur les mesures de Wigner
,”
Rev. Mat. Iberoam.
9
,
553
618
(
1993
).
18.
Martin
,
P.
and
Nenciu
,
G.
, “
Semi-classical inelastic S-matrix for one dimensional N-states systems
,”
Rev. Math. Phys.
7
,
193
242
(
1995
).
19.
Miller, L., “Propagation d’ondes semi-classiques à travers une interface et mesures deux-microlocales,” Thèse de l’Ecole Polytechnique, 1995.
20.
Spohn
,
H.
and
Teufel
,
S.
, “
Adiabatic decoupling and time-dependent Born-Oppenheimer theory
,”
Commun. Math. Phys.
224
,
113
132
(
2001
).
21.
Zener
,
C.
, “
Non-adiabatic crossing of energy levels
,”
Proc. R. Soc. London
137
,
696
702
(
1932
).
This content is only available via PDF.
You do not currently have access to this content.