This article gives a semiclassical description of nucleonic propagation through codimension two crossings of electronic energy levels. Codimension two crossings are the simplest energy level crossings, which affect the Born–Oppenheimer approximation in the zeroth order term. The model we study is a two-level Schrödinger equation with a Laplacian as kinetic operator and a matrix-valued linear potential, whose eigenvalues cross, if the two nucleonic coordinates equal zero. We discuss the case of well-localized initial data and obtain a description of the wavefunction’s two-scaled Wigner measure and of the weak limit of its position density, which is valid globally in time.
REFERENCES
1.
Colin de Verdière
, Y.
, Lombardi
, M.
, and Pollet
, J.
, “The microlocal Landau-Zeuer formula
,” Ann. I.H.P. Phys. Theor.
71
, 95
–127
(1999
).2.
Dimassi, M. and Sjöstrand, J., Spectral Asymptotics in the Semi-Classical Limit, (Cambridge University Press, Cambridge, 1999).
3.
Exner
, P.
and Joye
, A.
, “Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder
,” J. Math. Phys.
42
, 4707
–4738
(2001
).4.
Fermanian Kammerer
, C.
, “Mesures semi-classiques deux-microlocales
,” C. R. Acad. Sci. Paris
331
, Ser
: 1
515
–518
(2000
).5.
Fermanian Kammerer, C., “A non-commutative Landau-Zener formula, prépublication de l’Université de Cergy-Pontoise,” (2002).
6.
Fermanian Kammerer
, C.
and Gérard
, P.
, “Mesures semi-classiques et croisements de modes
,” Bull. S. M. F.
130
, 123
–168
(2002
).7.
Gérard
, P.
, “Microlocal defect measures
,” Commun. Partial Differ. Equ.
16
, 1761
–1794
(1991
).8.
Gérard, P., “Mesures semi-classiques et ondes de Bloch,” Exposé de l’Ecole Polytechnique, E.D.P., Exposé (1991).
9.
Gérard
, P.
and Leichtnam
, E.
, “Ergodic properties of eigenfunctions for the dirichlet problem
,” Duke Math. J.
71
, 559
–607
(1993
).10.
Gérard
, P.
, Markowich
, P. A.
, Mauser
, N. J.
, and Poupaud
, F.
, “Homogenization limits and Wigner transforms
,” Commun. Pure Appl. Math.
50
, 323
–379
(1997
).11.
Hagedorn
, G. A.
, “Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps
,” Commun. Math. Phys.
136
, 433
–449
(1991
).12.
Hagedorn
, G. A.
, “Molecular propagation through electron energy level crossings
,” Mem. Am. Math. Soc.
111
, 536
(1994
).13.
Hagedorn
, G. A.
and Joye
, A.
, “Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
,” Ann. I.H.P. Phys. Theor.
68
, 85
–134
(1998
).14.
Hagedorn
, G. A.
and Joye
, A.
, “Molecular propagation through small avoided crossings of electron energy levels
,” Rev. Math. Phys.
11
, 41
–101
(1999
).15.
Joye
, A.
, “Proof of the Landau-Zener formula
,” Asymptotic Anal.
9
, 209
–258
(1994
).16.
Landau, L., Collected Papers of L. Landau (Pergamon, New York, 1965).
17.
Lions
, P.-L.
and Paul
, T.
, “Sur les mesures de Wigner
,” Rev. Mat. Iberoam.
9
, 553
–618
(1993
).18.
Martin
, P.
and Nenciu
, G.
, “Semi-classical inelastic -matrix for one dimensional -states systems
,” Rev. Math. Phys.
7
, 193
–242
(1995
).19.
Miller, L., “Propagation d’ondes semi-classiques à travers une interface et mesures deux-microlocales,” Thèse de l’Ecole Polytechnique, 1995.
20.
Spohn
, H.
and Teufel
, S.
, “Adiabatic decoupling and time-dependent Born-Oppenheimer theory
,” Commun. Math. Phys.
224
, 113
–132
(2001
).21.
Zener
, C.
, “Non-adiabatic crossing of energy levels
,” Proc. R. Soc. London
137
, 696
–702
(1932
).
This content is only available via PDF.
© 2003 American Institute of Physics.
2003
American Institute of Physics
You do not currently have access to this content.