We consider the asymptotic evolution of a relativistic spin-12 particle, i.e., a particle whose wave function satisfies the Dirac equation with external static potential. We prove that the probability for the particle crossing a (detector) surface converges to the probability, that the direction of the momentum of the particle lies within the solid angle defined by the (detector) surface, as the distance of the surface goes to infinity. This generalizes earlier nonrelativistic results, known as flux across surfaces theorems, to the relativistic regime.

1.
Amrein
,
W. O.
and
Pearson
,
D. B.
, “
Flux and scattering into cones for long range and singular potentials
,”
J. Phys. A
30
,
5361
5379
(
1997
).
2.
Amrein
,
W. O.
and
Zuleta
,
J. L.
, “
Flux and scattering into cones in potential scattering
,”
Helv. Phys. Acta
70
,
1
15
(
1997
).
3.
Combes
,
J.-M.
,
Newton
,
R. G.
, and
Shtokhamer
,
R.
, “
Scattering into cones and flux across surfaces
,”
Phys. Rev. D
11
,
366
372
(
1975
).
4.
Daumer
,
M.
,
Dürr
,
D.
,
Goldstein
,
S.
, and
Zanghı̀
,
N.
, “
On the flux-across-surfaces theorem
,”
Lett. Math. Phys.
38
,
103
116
(
1996
).
5.
Daumer
,
M.
,
Dürr
,
D.
,
Goldstein
,
S.
, and
Zanghı̀
,
N.
, “
On the quantum probability flux through surfaces
,”
J. Stat. Phys.
88
,
967
977
(
1997
).
6.
Dell’Antonio, G. F. and Panati, G., “Zero-energy resonances and the flux-across surfaces theorem,” mp_arc preprint 01-402, 2001.
7.
Dollard
,
J. D.
, “
Scattering into cones I, potential scattering
,”
Commun. Math. Phys.
12
,
193
203
(
1969
).
8.
Dürr
,
D.
,
Goldstein
,
S.
,
Teufel
,
S.
, and
Zanghi
,
N.
, “
Scattering theory from microscopic first principles
,”
Physica A
279
,
416
431
(
2000
).
9.
Haag, R., Local Quantum Physics (Springer-Verlag, Berlin, 1992).
10.
Hörmander, L., The Analysis of Linear Partial Differential Operatoers I (Springer-Verlag, Berlin, 1983).
11.
Ikebe
,
T.
, “
Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory
,”
Arch. Ration. Mech. Anal.
5
,
1
34
(
1960
).
12.
Panati, G. and Teta, A., “The flux-across-surfaces theorem for a point interaction Hamiltonian,” in Stochastic Processes, Physics and Geometry: New Interplays I, edited by Holden et al., Conference Proceedings of the Canadian Mathematical Society, 2001.
13.
Riesz, F. and von Sz.-Nagy, B., Functional Analysis (F. Ungar, New York, 1955).
14.
Teufel, S., The flux-across-surfaces theorem and its implications for scattering theory, Dissertation an der Ludwig-Maximilians-Universität München, 1999.
15.
Teufel
,
S.
,
Dürr
,
D.
, and
Münch-Berndl
,
K.
, “
The flux-across-surfaces theorem for wavefunctions without energy cutoffs
,”
J. Math. Phys.
40
,
1901
1922
(
1999
).
16.
Thaller, B., The Dirac Equation (Springer-Verlag, Berlin, 1992).
This content is only available via PDF.
You do not currently have access to this content.