The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann (Berezin) integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra Gm (i.e., a sought after element of the Grassmann algebra Gm). A particular type of Grassmann integral equations is explicitly studied for certain low-dimensional Grassmann algebras. The choice of the equation under investigation is motivated by the effective action formalism of (lattice) quantum field theory. In a very general setting, for the Grassmann algebras G2n,n=2,3,4, the finite-dimensional analogues of the generating functionals of the Green functions are worked out explicitly by solving a coupled system of nonlinear matrix equations. Finally, by imposing the condition G[{Ψ̄},{Ψ}]=G0[{λΨ̄},{λΨ}]+const,0<λ∈R(Ψ̄k,Ψk,k=1,…,n, are the generators of the Grassmann algebra G2n), between the finite-dimensional analogues G0 and G of the (“classical”) action and effective action functionals, respectively, a special Grassmann integral equation is being established and solved which also is equivalent to a coupled system of nonlinear matrix equations. If λ≠1, solutions to this Grassmann integral equation exist for n=2 (and consequently, also for any even value of n, specifically, for n=4) but not for n=3. If λ=1, the considered Grassmann integral equation (of course) has always a solution which corresponds to a Gaussian integral, but remarkably in the case n=4 a further solution is found which corresponds to a non-Gaussian integral. The investigation sheds light on the structures to be met for Grassmann algebras G2n with arbitrarily chosen n.

1.
M. Creutz, Quarks, Gluons and Lattices, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1983).
2.
I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1994).
3.
H. J. Rothe, Lattice Gauge Theories—An Introduction, World Scientific Lecture Notes in Physics, Vol. 43 (1st ed.) and Vol. 59 (2nd ed.) (World Scientific, Singapore, 1st ed., 1992; 2nd ed., 1997).
4.
J. Smit, Introduction to Quantum Fields on the Lattice—‘A Robust Mate,’ Cambridge Lecture Notes in Physics, Vol. 15 (Cambridge University Press, Cambridge, 2002).
5.
F. A. Berezin, Metod Vtorichnogo Kvantovaniya, 1st ed., Sovremennye Problemy Matematiki (Nauka, Moscow, 1st ed., 1965; 2nd ext. ed. 1980). English translation of the first Russian edition: The Method of Second Quantization. Pure and Applied Physics, Vol. 24 (Academic, New York, 1966).
6.
S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, Vol. 1, 1995; Vol. 2, 1996; Vol. 3, 2000).
7.
S. V. Ketov, Conformal Field Theory (World Scientific, Singapore, 1995).
8.
I. S. Krasil’shchik and P. H. M. Kersten, Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations, Mathematics and Its Applications, Vol. 507 (Kluwer, Dordrecht, 2000).
9.
A. Yu. Khrennikov, Superanaliz (Nauka–Fizmatlit, Moscow, 1997). Updated and revised English translation: Superanalysis, Mathematics and Its Applications, Vol. 470 (Kluwer, Dordrecht, 1999).
10.
A.
Frydryszak
,
Lett. Math. Phys.
20
,
159
(
1990
).
11.
F.-L.
Chan
,
K.-M.
Lau
, and
R. J.
Finkelstein
,
J. Math. Phys.
33
,
2688
(
1992
).
12.
A. G.
Knyazev
,
Vestn. Ross. Univ. Druzhby Narodov, Ser. Mat.
2
(
1
),
62
(
1995
) [in Russian, English abstract].
13.
For a general discussion of these equations see, e.g., Ref. 14, Chap. 1, Sec. 7. p. 72 (Sec. 1.7, p. 75 of the English translation), Ref. 15, Sec. 10.1, p. 475, Refs. 16, 17; in the context of purely fermionic theories these equations can be found displayed, e.g., in Ref. 18, Sec. 4.C, Exercise 4.C.2, p. 54, Refs. 19, 20.
14.
A. N. Vasil’ev, Funktsional’nye Metody v Kvantovoı̆ Teorii Polya i Statistike. (Izdatel’stvo Leningradskogo Universiteta Leningrad University Press, Leningrad, 1976);
English translation, A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics (Gordon and Breach Science Publishers, Australia, 1998).
15.
C. Itzykson and J.-B. Zuber, Quantum Field Theory, International Series in Pure and Applied Physics (McGraw-Hill, New York, 1980).
16.
R. J. Rivers, Path Integral Methods in Quantum Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1987).
17.
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, Vol. 77 (1st ed.), Vol. 85 (2nd ed.), Vol. 92 (3rd ed.), Vol. 113 (4th ed.) (Clarendon, Oxford, 1st ed., 1989; 2nd ed., 1993; 3rd ed., 1996; 4th ed., 2002).
18.
P. Cvitanović (lecture notes prepared by E. Gyldenkerne), Field Theory. Classics Illustrated, Nordita Lecture Notes (Nordita, Copenhagen, 1983).
19.
J. W.
Lawson
and
G. S.
Guralnik
,
Nucl. Phys. B
459
,
612
(
1996
) [arXiv:hep-th/9507131].
20.
G. S. Guralnik, “Source driven solutions of quantum field theories,” in Quantum Chromodynamics: Collisions, Confinement and Chaos, edited by H. M. Fried and B. Müller, Proceedings of the Workshop, The American University of Paris, 3–8 June 1996 (World Scientific, River Edge, NJ, 1997), pp. 89–97 [arXiv:hep-th/9701098].
21.
T.
Barnes
and
G. I.
Ghandour
,
Czech. J. Phys., Sect. B
29
,
256
(
1979
).
22.
R.
Floreanini
and
R.
Jackiw
,
Phys. Rev. D
37
,
2206
(
1988
).
23.
Z[J] can be understood as the (infinite-dimensional) Fourier transform of exp iΓ0[φ], [Ref. 24, Ref. 14, Chap. 1, Sec. 6, Subsec. 7, p. 71 (Subsec. 1.6.7, p. 73 of the English translation)].
24.
C.
de Dominicis
and
F.
Englert
,
J. Math. Phys.
8
,
2143
(
1967
).
25.
C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer Tracts in Modern Physics, Vol. 145 (Springer, Berlin, 1998).
26.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1st ed., 1990; 2nd ed., 1995).
27.
E. Abdalla, M. C. B. Abdalla, and K. D. Rothe, Non-Perturbative Methods in 2 Dimensional Quantum Field Theory (World Scientific, Singapore, 1991).
28.
L. V.
Prokhorov
,
Yad. Fiz.
16
,
854
(
1972
).
L. V.
Prokhorov
, [English translation:
Sov. J. Nucl. Phys.
16
,
473
(
1973
)].
29.
E. R.
Caianiello
and
G.
Scarpetta
,
Nuovo Cimento A
22
,
148
(
1974
).
30.
W.
Kainz
,
Lett. Nuovo Cimento
12
,
217
(
1975
).
31.
H. G.
Dosch
,
Nucl. Phys. B
96
,
525
(
1975
).
32.
G.
Scarpetta
and
G.
Vilasi
,
Nuovo Cimento A
28
,
62
(
1975
).
33.
J. R.
Klauder
,
Acta Phys. Austriaca
41
,
237
(
1975
).
34.
M.
Marinaro
,
Nuovo Cimento A
32
,
355
(
1976
).
35.
S.
Kövesi-Domokos
,
Nuovo Cimento A
33
,
769
(
1976
).
36.
H. G.
Dosch
and
V. F.
Müller
,
Acta Phys. Austriaca
47
,
313
(
1977
).
37.
R.
Kotecký
and
D.
Preiss
,
Lett. Math. Phys.
2
,
21
(
1977
).
38.
A.
Patrascioiu
,
Phys. Rev. D
17
,
2764
(
1978
).
39.
P.
Cvitanović
,
B.
Lautrup
, and
R. B.
Pearson
,
Phys. Rev. D
18
,
1939
(
1978
).
40.
S.
de Filippo
and
G.
Scarpetta
,
Nuovo Cimento A
50
,
305
(
1979
).
41.
E.
Kapuścik
,
Czech. J. Phys., Sect. B
29
,
33
(
1979
).
42.
J. R.
Klauder
,
Ann. Phys. (N.Y.)
117
,
19
(
1979
).
43.
J.
Zinn-Justin
,
J. Math. Phys.
22
,
511
(
1981
).
Reprinted in Large-Order Behavior of Perturbation Theory, edited by J. C. Le Guillou and J. Zinn-Justin, Current Physics–Sources and Comments, Vol. 7 (North-Holland, Amsterdam, 1990), pp. 180–189.
44.
J.
Zinn-Justin
,
Phys. Rep.
70
,
109
(
1981
).
45.
A.
Patrascioiu
,
Phys. Rev. D
27
,
1798
(
1983
).
46.
C. M.
Bender
and
F.
Cooper
,
Nucl. Phys. B
224
,
403
(
1983
).
47.
E.
Chalbaud
and
P.
Martin
,
J. Math. Phys.
27
,
699
(
1986
).
48.
C. M.
Bender
,
F.
Cooper
, and
L. M.
Simmons
, Jr.
,
Phys. Rev. D
39
,
2343
(
1989
).
49.
H. T.
Cho
,
K. A.
Milton
,
S. S.
Pinsky
, and
L. M.
Simmons
, Jr.
,
J. Math. Phys.
30
,
2143
(
1989
).
50.
H.
Goldberg
and
M. T.
Vaughn
,
Phys. Rev. Lett.
66
,
1267
(
1991
).
51.
P.
Kleinert
,
Proc. R. Soc. London, Ser. A
435
,
129
(
1991
).
52.
A.
Okopińska
,
Phys. Rev. D
43
,
3561
(
1991
).
53.
S. Garcia, Z. Guralnik, and G. S. Guralnik, “Theta vacua and boundary conditions of the Schwinger–Dyson equations,” Massachusetts Institute of Technology Report No. MIT-CTP-2582, Princeton University Report No. PUPT-1670, Physics E-Print arXiv:hep-th/9612079.
54.
Z. Guralnik, “Boundary conditions for Schwinger–Dyson equations and vacuum selection,” in Neutrino Mass, Dark Matter, Gravitational Waves, Condensation of Atoms and Monopoles, Light-Cone Quantization, edited by B. N. Kursunoglu, S. L. Mintz, and A. Perlmutter, Proceedings of the International Conference on Orbis Scientiae 1996, January 25–28, 1996, Miami Beach, Florida (Plenum, New York, 1996), pp. 377–383.
55.
Z. Guralnik, “Multiple vacua and boundary conditions of Schwinger–Dyson equations,” in Quantum Chromodynamics: Collisions, Confinement and Chaos, edited by H. M. Fried and B. Müller, Proceedings of the Workshop, The American University of Paris, 3–8 June 1996 (World Scientific, River Edge, NJ, 1997), pp. 375–383 [arXiv:hep-th/9608165].
56.
J.
Karczmarczuk
,
Theor. Comput. Sci.
187
,
203
(
1997
).
57.
C. M.
Bender
,
K. A.
Milton
, and
V. M.
Savage
,
Phys. Rev. D
62
,
085001
(
2000
) [arXiv:hep-th/9907045].
58.
C. M.
Bender
and
H. F.
Jones
,
Found. Phys.
30
,
393
(
2000
).
59.
J. R. Klauder, Beyond Conventional Quantization (Cambridge University Press, Cambridge, 2000).
60.
A. P. C.
Malbouisson
,
R.
Portugal
, and
N. F.
Svaiter
,
Physica A
292
,
485
(
2001
) [arXiv:hep-th/9909175].
61.
A. N.
Argyres
,
A. F. W.
van Hameren
,
R. H. P.
Kleiss
, and
C. G.
Papadopoulos
,
Eur. Phys. J. C
19
,
567
(
2001
) [arXiv:hep-th/0101346].
62.
C.
Dams
,
R.
Kleiss
,
P.
Draggiotis
,
A. N.
Argyres
,
A.
van Hameren
, and
C. G.
Papadopoulos
,
Eur. Phys. J. C
28
,
561
(
2003
) [arXiv:hep-th/0112258].
63.
R.
Häußling
,
Ann. Phys. (N.Y.)
299
,
1
(
2002
) [arXiv:hep-th/0109161].
64.
B.
Pioline
, “Cubic free field theory,” in Progress in String, Field and Particle Theory, edited by L. Baulieu et al., Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, May 27–June 8, 2002, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 104 (Kluwer, Dordrecht, 2003) [arXiv:hep-th/0302043].
65.
Again, we obtain them from the Euclidean field theory version of these equations where in Eq. (1) the imaginary unit i in the exponent is replaced by 1. (In the Grassmann algebra case this is just a matter of convention as convergence considerations for integrals do not play any role.) Z[{η̄},{η}] is the Fourier–Laplace transform of exp G0[{χ̄},{χ}]. For a discussion of the Fourier–Laplace transformation in a Grassmann algebra see Ref. 66, Ref. 14, Chap. 1, Sec. 6, Subsec. 2, pp. 62/63 (Subsec. 1.6.2, p. 63 of the English translation), Ref. 67, Appendix A, p. 355, Ref. 68, Appendix A, p. 3709, Ref. 69, Subsec. 10.5.4., p. 339, Ref. 9, Subsec. 2.3, p. 72 (p. 74 of the English translation).
66.
R. M.
Lovely
and
F. J.
Bloore
,
Lett. Nuovo Cimento
6
,
302
(
1973
).
67.
F. A.
Berezin
and
M. S.
Marinov
,
Ann. Phys. (N.Y.)
104
,
336
(
1977
).
68.
A.
Lasenby
,
C.
Doran
, and
S.
Gull
,
J. Math. Phys.
34
,
3683
(
1993
).
69.
G. Roepstorff, Path Integral Approach to Quantum Physics–An Introduction, Texts and Monographs in Physics (Springer, Berlin, 1994).
70.
S. Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge University Press, Champaign, IL/Cambridge, 1996).
71.
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).
72.
A. N. Malyshev, “Matrix equations. Factorization of matrix polynomials,” in Handbook of Algebra, edited by M. Hazewinkel (Elsevier, Amsterdam, 1996), Vol. 1, pp. 79–116.
73.
K.
Scharnhorst
,
Int. J. Theor. Phys.
36
,
281
(
1997
) [arXiv:hep-th/9312137].
74.
Only by accident, in preparing the final draft of the present paper we became aware of the fact that the concept proposed in Ref. 73 (preprint version, University of Leipzig Preprint NTZ 16/1993, Physics E-Print arXiv:hep-th/9312137) has also been proposed earlier by Prokhorov (Ref. 28).
75.
M. Marcus, Finite Dimensional Multilinear Algebra, 2 Parts. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 23 (Dekker, New York, Part 1, 1973; Part 2, 1975).
76.
The notation P(2n)⋆ is chosen with hindsight. Of course, P(2n)⋆=P(2n)—ignoring the fact that (very formally) these constants live in different spaces, cf. Eq. (24): P(2n)⋆ is a constant without indices while P(2n) is a 1×1 matrix with a length n row and column index.
77.
W.
Kerler
,
Z. Phys. C: Part. Fields
22
,
185
(
1985
).
78.
I. C.
Charret
,
S. M.
de Souza
, and
M. T.
Thomaz
,
Braz. J. Phys.
26
,
720
(
1996
).
79.
A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory and Applications, Pure and Applied Mathematics (Wiley, New York, 1974).
80.
Speaking rigorously and for any value of n, this is not possible as due to our choice (29) A(0) cannot be found from G[{Ψ̄},{Ψ}]. The action map f can only be inverted in the subspace of the coefficients A(2k)′,A(2k),k>0. In a way, A(0) is a dummy variable while A(0)′=ln P can be understood as a function of A(2k)′,k>0, via its dependence on A(2k),k>0. In this view, the coefficients A(2k),k>0, are given in terms of the coefficients A(2k)′,k>0, by means of the inverse action map f−1. On the other hand, A(0) can be given a sensible meaning if one assumes that the action G0 has been induced by some other action G−1 exactly the same way as the action G is being induced by G0. Then, one can derive an expression for A(0) in terms of the coefficients A(2k),k>0, by means of the inverse action map f−1. This way, on the basis of Eq. (54) one finds for n=2:A(0)=2 lndetA(2)lnP(4)⋆ [cf. Sec. III A, Eq. (139)].
81.
M.
Marcus
and
A.
Yaqub
,
Port. Math.
22
,
143
(
1963
).
82.
Then, A(2) has a 2×2 block matrix structure and A(4) has a diagonal matrix structure with A(4)=diag(A12,12(4),0,0,0,0,A34,34(4)).
83.
We disregard here the generalization to the case detA(2)=−1.
84.
If we would redefine the Fourier–Laplace transformation in a Grassmann algebra by replacing on the lhs of Eq. (180) η̄, η by iη̄,iη, Eq. (179) would of course read [A(2)]2=14.
85.
Compare, e.g., Ref. 86, Ref. 88, Chap. IX, p. 245. For an early account of the history of self-reciprocal functions see Ref. 89. Eigenfunctions to the eigenvalue −1 are often called skew-reciprocal. In optics, following a paper by Caola (who seems to not have been aware of the history of the subject in mathematics, Ref. 90) in recent years self-reciprocal functions are often referred to as “self-Fourier functions” (in the context of the Fourier transformation). Incidentally, also note the comment in Ref. 91 on the earlier optics literature on the subject.
86.
G. H.
Hardy
and
E. C.
Titchmarsh
,
Q. J. Math.
1
,
196
(
1930
). Reprinted in Ref. 87, Chap. 1 (a), pp. 167–202 (including some corrections, p. 202).
87.
Collected Papers of G. H. Hardy—Including Joint Papers with J. E. Littlewood and Others, edited by a committee appointed by the London Mathematical Society (Clarendon, Oxford, 1979), Vol. VII.
88.
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon, Oxford, 1937).
89.
B. M.
Mehrotra
,
J. Indian Math. Soc., New Ser.
1
,
209
(
1935
).
90.
M. J.
Caola
,
J. Phys. A
24
,
L1143
(
1991
).
91.
P. P.
Banerjee
and
T. C.
Poon
,
J. Opt. Soc. Am. A
12
,
425
(
1995
).
92.
Incidentally, in considering the bosonic (real/complex analysis) analogue [Eq. (201)] of the Grassmann integral equation (133) Eq. (191) can also be disregarded as it does not lead to any convergent integral.
93.
M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Encyclopedia of Mathematics and Its Applications, Vol. 32 (Cambridge University Press, Cambridge, 1990).
94.
M. Kuczma, Functional Equations in a Single Variable, Monografie Matematyczne, Vol. 46 (PWN—Polish Scientific Publishers, Warsaw, 1968).
95.
G. Targonski, Topics in Iteration Theory, Studia MathematicaSkript 6 (Vandenhoeck & Ruprecht, Göttingen, 1981).
96.
J. L.
Massera
and
A.
Petracca
,
Rev. Union Mat. Argent. Asoc. Fis. Argent.
11
,
206
(
1946
) [in Spanish].
97.
R.
Euler
and
J.
Foran
,
Math. Mag.
54
,
185
(
1981
).
98.
A.
Barnes
,
Math. Gaz.
65
,
284
(
1981
).
99.
S.
Dolan
,
Math. Gaz.
66
,
314
(
1982
).
100.
R.
Anschuetz
II
and
H.
Sherwood
,
Coll. Math. J.
27
,
388
(
1996
).
101.
R.
Cheng
,
A.
Dasgupta
,
B. R.
Ebanks
,
L. F.
Kinch
,
L. M.
Larson
, and
R. B.
McFadden
,
Am. Math. Monthly
105
,
704
(
1998
).
102.
G. P. Pelyukh and A. N. Sharkovskiı̆, VvedenievTeoriyu Funktsional’nykh Uravneniı̆ [Introduction to the Theory of Functional Equations] (Naukova Dumka, Kiev, 1974) [in Russian].
103.
K. J.
Falconer
,
Eureka
37
,
21
(
1974
).
104.
P. J.
McCarthy
and
W.
Stephenson
,
Proc. London Math. Soc.
51
,
95
(
1985
).
105.
P. J.
McCarthy
,
M.
Crampin
, and
W.
Stephenson
,
Math. Proc. Cambridge Philos. Soc.
97
,
261
(
1985
).
106.
P. J.
McCarthy
,
Math. Proc. Cambridge Philos. Soc.
98
,
195
(
1985
).
107.
C.
Babbage
,
Philos. Trans. R. Soc. London
105
,
389
(
1815
). Reprinted in Ref. 110, pp. 93–123.
108.
C.
Babbage
,
Philos. Trans. R. Soc. London
106
,
179
(
1816
). Reprinted in Ref. 110, pp. 124–193.
109.
C. Babbage, “Examples of the solutions of functional equations,” in A Collection of Examples of the Applications of the Differential and Integral Calculus, edited by C. Babbage, J. F. W. Herschel, G. Peacock (J. Deighton and Sons, Cambridge, 1820), Part III. Reprinted in Ref. 110, pp. 287–326. An extract of this work written by J. D. Gergonne (the editor of the Annales de Mathematiques Pures et Appliquees) has been published in French: C. Babbage (Extrait par M. [Extract by Mr.] Gergonne): Des équations fonctionnelles [Functional equations]. Ann. Math. Pures Appl. 12, 73 (1821/22).
110.
The Works of Charles Babbage. Volume 1. Mathematical Papers, edited by M. Campbell-Kelly [The Pickering Masters, William Pickering (Pickering and Chatto Publishers, London, 1989)].
111.
P. J.
McCarthy
,
Math. Gaz.
64
,
107
(
1980
).
112.
M.
Laitoch
,
Acta Univ. Palacki. Olomuc., Fac. Rerum Nat.
105
(Mathematica 31),
83
(
1992
).
113.
J.
Aczél
,
Am. Math. Monthly
55
,
638
(
1948
).
114.
H.
Schwerdtfeger
,
Aequa. Math.
2
,
50
(
1969
).
115.
N.
Ullah
,
Commun. Math. Phys.
104
,
693
(
1986
).
116.
S. M.
de Souza
and
M. T.
Thomaz
,
J. Math. Phys.
31
,
1297
(
1990
).
117.
Y.
Grandati
,
A.
Bérand
, and
P.
Grangé
,
J. Math. Phys.
33
,
1082
(
1992
).
118.
G.
Schulz
,
Z. Angew. Math. Mech.
13
,
57
(
1933
) [in German].
119.
Also see in this respect, e.g., Ref. 120, Chap. IV, Part I, Art. 4.11, p. 120, Ref. 121, Sec. 7, p. 14, Ref. 122, Part III.B, p. 227. For further references see, e.g., Ref. 123.
120.
R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some Applications to Dynamics and Differential Equations (Cambridge University Press, Cambridge, 1938).
121.
H.
Hotelling
,
Ann. Math. Stat.
14
,
1
(
1943
).
122.
E. Bodewig, Matrix Calculus, 2nd rev. and enlarged ed. (North-Holland, Amsterdam, 1959).
123.
W. E.
Pierce
,
Linear Algebr. Appl.
244
,
357
(
1996
).
124.
For a general discussion of eigenfunctions and eigenvalues of integral transformations see Ref. 125, for a discussion concerning the Fourier transformation see, e.g., Ref. 88, Subsec. 3.8, p. 81. Incidentally and as an aside, we mention here that the Laplace transformation does not have any real eigenfunctions to the eigenvalue 1 (Ref. 126, Ref. 125, Sec. 4, p. 121).
125.
G.
Doetsch
,
Math. Ann.
117
,
106
(
1940
/41) [scanned pages of this article are freely available online at the Göttingen Digitalization Center (GDZ) site: http://gdz.sub.uni-goettingen.de/en/index.html] [in German].
126.
G. H.
Hardy
and
E. C.
Titchmarsh
,
J. London Math. Soc.
4
,
300
(
1929
). Reprinted in Ref. 87, Chap. 1 (b), pp. 372–377 (including some correction, p. 377).
127.
Possibly, it might be appropriate here to not loose sight of the fact that besides the eigenvalue 1 the Fourier transformation has also three more eigenvalues: −1,±i.
128.
J. R. Klauder, “Functional techniques and their application in quantum field theory,” in Mathematical Methods in Theoretical Physics, edited by W. E. Brittin, Lectures in Theoretical Physics, Vol. 14 B (Colorado Associated University Press, Boulder, Colorado, 1973), pp. 329–421.
129.
P.
Lévy
, Fonctions caractéristiques positives [Positive characteristic functions].
C.R. Seances Acad. Sci., Ser. A
265
,
249
(
1967
) [in French]. Reprinted in Œuvres de Paul Lévy Volume III. Eléments Aléatoires, edited by D. Dugué in collaboration with P. Deheuvels, M. Ibéro (Gauthier-Villars Éditeur, Paris, 1976), pp. 607–610.
130.
J. L.
Teugels
,
Bull. Soc. Math. Belg.
23
,
236
(
1971
).
131.
O.
Barndorff-Nielsen
,
J.
Kent
, and
M.
Sørensen
,
Int. Statist. Rev.
50
,
145
(
1982
).
132.
D.
Pestana
,
Publ. Inst. Stat. Univ. Paris
28
(
1-2
),
81
(
1983
).
133.
G. G.
Hamedani
and
G. G.
Walter
,
Publ. Inst. Stat. Univ. Paris
30
(
1-2
),
45
(
1985
).
134.
G. G.
Hamedani
and
G. G.
Walter
,
Publ. Inst. Stat. Univ. Paris
32
(
1-2
),
45
(
1987
).
135.
G.
Laue
,
Math. Nachr.
139
,
289
(
1988
).
136.
L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statistics, Vol. 76 (Springer, New York, 1992).
137.
H.-J.
Rossberg
,
J. Math. Sci. (N. Y.)
76
,
2181
(
1995
). This article is part of: Problemy Ustoı̆chivosti Stokhasticheskikh Modeleı̆ [Problems of the Stability of Stochastic Models]—Trudy Seminara (Proceedings of the Seminar on Stochastic Problems), Moscow, 1993;
H.-J.
Rossberg
,
J. Math. Sci. (N. Y.)
76
,
2093
(
1995
).
138.
K.
Schladitz
and
H. J.
Engelbert
,
Teor. Veroyatn. Primen.
40
,
694
(
1995
);
K.
Schladitz
and
H. J.
Engelbert
,
Theor. Probab. Appl.
40
,
577
(
1996
).
139.
G. Laue, M. Riedel, and H.-J. Roßberg, Unimodale and positiv definite Dichten [Unimodal and Positive Definite Densities] Teubner Skripten zur Mathematischen Stochastik (Teubner, Stuttgart, 1999) [in German].
140.
A.
Nosratinia
,
J. Franklin Inst.
336
,
1219
(
1999
).
141.
Incidentally, it seems worth mentioning here a theorem of Marcinkiewicz [Ref. 142, p. 616 (p. 467 of the ‘Collected Papers’)] theorem 2bis: If the function g(x) is a finite polynomial in x its degree cannot exceed 2. Otherwise, the function exp g(x) cannot be a characteristic function. Consequently, in the (non-Gaussian) cases we are interested in the function g(x) cannot be a finite polynomial.
142.
J.
Marcinkiewicz
,
Math. Z.
44
,
612
(
1939
) [Scanned pages of this article are freely available online at the Göttingen Digitalization Center (GDZ) site: http://gdz.sub.uni-goettingen.de/en/index.html] [in French]. Reprinted in J. Marcinkiewicz, Collected Papers, edited by A. Zygmund with collaboration of S. Lojasewicz, J. Musielak, K. Urbanik, and A. Wiweger (Państwowe Wydawnictwo Naukowe, Warsaw, 1964), pp. 463–469.
143.
E.
Lukacs
,
Teor. Veroyatn. Primen.
13
,
114
(
1968
);
E.
Lukacs
,
Theor. Probab. Appl.
13
,
116
(
1968
).
144.
In the context of projective geometry, these matrices and their elements often are referred to as Plücker–Grassmann coordinates.
145.
T. Muir, A Treatise on the Theory of Determinants, revised and enlarged by W. H. Metzler. Privately published, Albany, New York, 1930. Reprint Dover Publications, New York, 1960.
146.
R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Applied Mathematical Sciences, Vol. 134 (Springer, New York, 1999).
147.
C. G. J.
Jacobi
,
J. Reine Angew. Math.
22
,
285
(
1841
) [in Latin]. Reprinted in K. Weierstrass (Weierstraß) (Ed.): C. G. J. Jacobi’s Gesammelte Werke, Vol. 3. Georg Reimer, Berlin, 1884, pp. 354–392 (Reprint: Chelsea Publishing/American Mathematical Society, New York/Providence, 1969; scanned pages of this volume are freely available online at the French National Library site: http://gallica.bnf.fr). A German translation of this article is available: C. G. J. Jacobi, Ueber die Bildung und die Eigenschaften der Determinanten (De formatione et proprietatibus Determinantium), edited by P. Stäckel (Ostwald’s Klassiker der exakten Wissenschaften, Vol. 77. Verlag von Wilhelm Engelmann, Leipzig, 1896), pp. 3–49, comments by P. Stäckel on pp. 66–73.
148.
T. Muir, The Theory of Determinants in the Historical Order of Development, 2nd ed. (Macmillan, New York, 1906), Vol. 1.
149.
J. H. M. Wedderburn, Lectures on Matrices, American Mathematical Society, Colloquium Publications, Vol. 17 (American Mathematical Society, New York, 1934) (chapters of this book are freely available online at the ‘AMS Books Online’ site: http://www.ams.org/online_bks/coll17).
150.
A. C. Aitken, Determinants and Matrices, 9. rev. ed., University Mathematical Texts. (Oliver and Boyd, Edinburgh, 1956) (1. ed. 1939).
151.
M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics (Martinus Nijhoff, Dordrecht, 1986).
152.
N. Jacobson, Basic Algebra I, 2nd ed. (Freeman, New York, 1985).
153.
P. M. Cohn, Algebra, 3 Vols., 2nd ed. (Wiley, Chichester, Vol. 1, 1982; Vol. 2, 1989; Vol. 3, 1991).
154.
D. L. Boutin, R. F. Gleeson, and R. M. Williams, “Wedge theory/compound matrices: Properties and applications,” Report No. NAWCADPAX-96-220-TR. Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA, 1996. Available from the U.S. National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, USA (http://www.ntis.gov). Scanned pages of this report are freely available online at the GrayLIT Network site: http://www.osti.gov/graylit [choose the Defense Technical Information Center (DTIC) Report Collection].
155.
U. Prells, M. I. Friswell, and S. D. Garvey, “Compound matrices and Pfaffians: A representation of geometric algebra,” in Applications of Geometric Algebra in Computer Science and Engineering, edited by L. Dorst, C. Doran, and J. Lasenby (Birkhäuser, Boston, 2002), pp. 109–118.
156.
M.
Vivier
,
Ann. Sci. Ec. Normale Super.
(3)
73
,
203
(
1956
) [in French].
157.
M.
Barnabei
,
A.
Brini
, and
G.-C.
Rota
,
J. Algebra
96
,
120
(
1985
).
158.
A. J. M. Spencer, “Theory of invariants,” in Continuum Physics. Volume I—Mathematics, edited by A. C. Eringen (Academic, New York, 1971), Part III, pp. 239–353.
159.
A. J. M. Spencer, “Isotropic polynomial invariants and tensor functions,” in Applications of Tensor Functions in Solid Mechanics, edited by J. P. Boehler, International Center for Mechanical Sciences (CISM), CISM Courses and Lectures, No. 292 (Springer-Verlag, Wien, 1987), Chap. 8, pp. 141–169.
This content is only available via PDF.
You do not currently have access to this content.