In this paper, we use renormalization methods to study self-similarity in the fluctuations ηi of the Harper equation in the strong-coupling limit for quadratic irrationals of the form (a2+4−a)/2 for a∈N. Using the decimation method, we obtain a second-order functional recurrence which we prove rigorously has an entire fixed point. This fixed point governs the scaling of the fluctuations ηi in the strong-coupling limit.

1.
Aubry
,
S.
and
André
,
G.
, “
Analyticity breaking and Anderson localization in incommensurate lattices
,”
Ann. Isr. Phys. Soc.
3
,
133
164
(
1980
).
2.
Ketoja
,
J. A.
and
Satija
,
I. I.
, “
Renormalization approach to quasiperiodic quantum spin chains
,”
Physica A
219
,
212
233
(
1995
).
3.
Ketoja
,
J. A.
and
Satija
,
I. I.
, “
Self-similarity and localization
,”
Phys. Rev. Lett.
75
,
2762
2765
(
1995
).
4.
Mestel
,
B. D.
,
Osbaldestin
,
A. H.
, and
Winn
,
B.
, “
Golden mean renormalization for the Harper equation: The strong coupling fixed point
,”
J. Math. Phys.
41
,
8304
8330
(
2000
).
5.
Mestel
,
B. D.
and
Osbaldestin
,
A. H.
, “
Periodic orbits of renormalization for the correlations of strange nonchaotic attractors
,”
Math. Phys. Electron. J.
6
,
27
(
2000
).
6.
Mestel
,
B. D.
and
Osbaldestin
,
A. H.
, “
Renormalization analysis of correlation properties in a quasiperiodically forced two-level system
,”
J. Math. Phys.
43
,
3458
3483
(
2002
).
7.
Mestel, B. D. and Osbaldestin, A. H., “Golden mean renormalization for a generalized Harper equation: The Ketoja-Satija orchid” (unpublished).
8.
Olds, C. D., Continued Fractions (Random House, New York, 1963).
9.
Simon
,
B.
, “
Schrödinger operators in the twentieth century
,”
J. Math. Phys.
41
,
3523
3555
(
2000
).
10.
Sokoloff
,
J. B.
, “
Unusual band-structure, wave-functions and electrical conductance in crystals with incommensurate periodic potentials
,”
Phys. Rep.
126
,
189
244
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.