There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern–Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern–Simons gauge theory in the light-cone gauge, which is more direct than already known methods.

1.
Bar-natan
,
D.
, “
Perturbative Chern-Simond theory
,”
J. Knot Theory Ramif.
4
(
4
),
503
547
(
1995
).
2.
Cotta-Ramusino
,
P.
,
Guadagnini
,
E.
,
Martellini
,
M.
, and
Mintchev
,
M.
, “
Quantum field theory and link invariants
,”
Nucl. Phys. B
330
,
557
574
(
1990
).
3.
Frohlich
,
J.
, and
King
,
C.
, “
The Chern-Simons theory and knot polynomials
,”
Commun. Math. Phys.
126
,
167
199
(
1989
).
4.
Guadagnini
,
E.
,
Martellini
,
M.
, and
Mintchev
,
M.
, “
Wilson lines in Chern-Simons theory and link invariants
,”
Nucl. Phys. B
330
,
575
607
(
1990
).
5.
Kontsevich
,
M.
, “
Vassiliev’s knot invariants
,”
Adv. Sov. Math
16
,
137
150
(
1993
).
6.
Labastida
,
J. M. F.
, and
Perez
,
E.
, “
Kontsevich integral for Vassiliev invariants from Chern-Simons perturbation theory in the light-cone gauge
,”
J. Math. Phys.
39
,
5183
5198
(
1998
).
7.
Le
,
T. Q. T.
, and
Murakami
,
J.
, “
Kontsevich’s integral for the Homfly polynomial and relations between values of multiple zeta functions
,”
Topol. Applic.
62
,
193
206
(
1995
).
8.
Ochiai
,
T.
, “
The combinatorial Gauss diagram formula for Kontsevich integral
,”
J. Knot Theory Ramif.
10
(
6
),
851
906
(
2001
).
9.
Ohtsuki, T., “Combinatorial quantum method in 3-dimensional topology,” MSJ Memoirs Vol. 3, Math. Soc. Japan (1999).
10.
Witten
,
E.
, “
Quantum field theory and the Jones polynomial
,”
Commun. Math. Phys.
121
,
351
399
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.