We present an elementary proof of the quantum de Finetti representation theorem, a quantum analog of de Finetti’s classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. The quantum de Finetti theorem, in a closely analogous fashion, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an “unknown quantum state” in quantum-state tomography. This result is especially important for information-based interpretations of quantum mechanics, where quantum states, like probabilities, are taken to be states of knowledge rather than states of nature. We further demonstrate that the theorem fails for real Hilbert spaces and discuss the significance of this point.

1.
See, for instance, Bohr’s Como lecture, N. Bohr, “The Quantum Postulate and the Recent Development of Atomic Theory,” in Atti del Congresso Internazionale dei Fisici 11–20 Settembre 1927, Como-Pavia-Roma, Volume Secondo (Nicola Zanichelli, Bologna, 1928), p. 565. This along with several iterations of the manuscript are reprinted in Niels Bohr: Collected Works, Volume 6, Foundations of Quantum Physics I (1926–1932), edited by J. Kalckar (North-Holland, Amsterdam, 1985).
2.
C. A.
Fuchs
and
A.
Peres
,
Phys. Today
53
(
3
),
70
(
2000
);
C. A.
Fuchs
and
A.
Peres
,
Phys. Today
53
(
9
),
14
(
2000
).
3.
C. M.
Caves
and
C. A.
Fuchs
,
Ann. Isr. Phys. Soc.
12
,
226
(
1996
).
4.
C. M.
Caves
and
R.
Schack
,
Complexity
3
,
46
(
1997
).
5.
For a sampling of the considerable lengths to which the exercise of close reading of the founders can be carried, see Niels Bohr and Contemporary Philosophy, edited by J. Faye and H. J. Folse (Kluwer, Dordrecht, 1994);
H. J. Folse, The Philosophy of Niels Bohr: The Framework of Complementarity (North-Holland, Amsterdam, 1985);
J. Honner, The Description of Nature: Niels Bohr and the Philosophy of Quantum Physics (Oxford University Press, Oxford, 1987);
D. Murdoch, Niels Bohr’s Philosophy of Physics (Cambridge University Press, Cambridge, 1987);
J. Faye, Niels Bohr: His Heritage and Legacy. An Anti-Realist View of Quantum Mechanics (Kluwer, Dordrecht, 1991);
S. Petruccioli, Atoms, Metaphors and Paradoxes: Niels Bohr and the Construction of a New Physics, translated by I. McGilvray (Cambridge University Press, Cambridge, 1993).
6.
G.
’t Hooft
,
Class. Quantum Grav.
16
,
3263
(
1999
).
7.
R. Jozsa, “Entanglement and Quantum Computation,” in The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, edited by S. A. Huggett, L. J. Mason, K. P. Tod, S. T. Tsou, and N. M. J. Woodhouse (Oxford University Press, Oxford, 1998), p. 369.
8.
R.
Schack
and
C. M.
Caves
,
Phys. Rev. A
60
,
4354
(
1999
).
9.
A. Ambainis, L. Schulman, and U. Vazirani, “Computing with Highly Mixed States,” in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC) (ACM, New York, 2000), p. 697.
10.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
,
Phys. Rev. Lett.
70
,
1895
(
1993
).
11.
D.
Boschi
,
S.
Branca
,
F.
De Martini
,
L.
Hardy
, and
S.
Popescu
,
Phys. Rev. Lett.
80
,
1121
(
1998
);
D.
Bouwmeester
,
J.-W.
Pan
,
K.
Mattle
,
M.
Eibl
,
H.
Weinfurter
, and
A.
Zeilinger
,
Nature (London)
390
,
575
(
1997
);
A.
Furusawa
,
J. L.
Sørensen
,
S. L.
Braunstein
,
C. A.
Fuchs
,
H. J.
Kimble
, and
E. S.
Polzik
,
Science
282
,
706
(
1998
).
12.
P. W.
Shor
,
Phys. Rev. A
52
,
R2493
(
1995
).
13.
A. M.
Steane
,
Phys. Rev. Lett.
77
,
793
(
1996
).
14.
C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), p. 175;
C. H.
Bennett
,
Phys. Rev. Lett.
68
,
3121
(
1992
).
15.
A.
Muller
,
H.
Zbinden
, and
N.
Gisin
,
Nature (London)
378
,
449
(
1995
);
W. T.
Buttler
,
R. J.
Hughes
,
P. G.
Kwiat
,
S. K.
Lamoreaux
,
G. G.
Luther
,
G. L.
Morgan
,
J. E.
Nordholt
,
C. G.
Peterson
, and
C. M.
Simmons
,
Phys. Rev. Lett.
81
,
3283
(
1998
);
R. J.
Hughes
,
G. L.
Morgan
, and
C. G.
Peterson
,
J. Mod. Opt.
47
,
533
(
2000
).
16.
Few have said this more elegantly than
J. B.
Hartle
, in
Am. J. Phys.
36
,
704
(
1968
). Here we quote the most important passage in that regard. Self-servingly, we have inserted the word “experimental” and substituted the phrase “probabilities of occurrence” for “truth values” to push it into a mildly better agreement with our own point of view: The state of a classical system is an objective property of the system and therefore changes only by dynamical laws. A quantum-mechanical state, being a summary of the observers’ information about an individual physical system, changes both by dynamical laws and whenever the observer acquires new information about the system through the process of measurement. The existence of two laws for the evolution of the state vector by the Schrödinger equation on the one hand and by the process of measurement (sometimes described as the “reduction of the wave packet”) on the other, is a classic subject for discussion in the quantum theory of measurement. The situation becomes problematical only if it is believed that the state vector is an objective property of the system. Then, the state vector must be required to change only by dynamical law, and the problem must be faced of justifying the second mode of evolution from the first. If, however, the state of a system is defined as a list of [experimental] propositions together with their [probabilities of occurrence], it is not surprising that after a measurement the state must be changed to be in accord with the new information … . The “reduction of the wave packet” does take place in the consciousness of the observer, not because of any unique physical process which takes place there, but only because the state is a construct of the observer and not an objective property of the physical system.
17.
S.
Goldstein
,
Phys. Today
51
(
3
),
42
(
1998
);
S.
Goldstein
,
Phys. Today
51
(
4
),
38
(
1998
).
18.
E. T.
Jaynes
,
Phys. Rev.
106
,
620
(
1957
).
19.
E. T.
Jaynes
,
Phys. Rev.
108
,
171
(
1957
).
20.
E. T. Jaynes, in Papers on Probability, Statistics and Statistical Physics, edited by R. D. Rosenkrantz (Kluwer, Dordrecht, 1983).
21.
C. H.
Bennett
,
Int. J. Theor. Phys.
21
,
905
(
1982
).
22.
See various papers collected in Maxwell’s Demon: Entropy, Information, and Computing, edited by H. S. Leff and A. F. Rex (Adam Hilger, Bristol, 1990).
23.
R.
Landauer
,
IBM J. Res. Dev.
5
,
183
(
1961
).
24.
E. C. G.
Stueckelberg
,
Helv. Phys. Acta
33
,
727
(
1960
).
25.
S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, New York, 1995).
26.
H.
Araki
,
Commun. Math. Phys.
75
,
1
(
1980
).
27.
W. K. Wootters, “Local Accessibility of Quantum Information,” in Complexity, Entropy and the Physics of Information, edited by W. H. Zurek (Addison–Wesley, Redwood City, CA, 1990), p. 39.
28.
K.
Vogel
and
H.
Risken
,
Phys. Rev. A
40
,
2847
(
1989
).
29.
D. T.
Smithey
,
M.
Beck
,
M. G.
Raymer
, and
A.
Faridani
,
Phys. Rev. Lett.
70
,
1244
(
1993
).
30.
U.
Leonhardt
,
Phys. Rev. Lett.
74
,
4101
(
1995
).
31.
Placing the player here would be about as respectable/responsible as George Berkeley’s famous patch to his philosophical system of idealism. The difficulty is captured engagingly by a limerick of Ronald Knox and its anonymous reply: There was a young man who said, “God Must think it exceedingly odd If he finds that this tree Continues to be When there’s no one about in the Quad.” REPLY Dear Sir: Your astonishment’s odd: I am always about in the Quad. And that’s why the tree Will continue to be, Since observed by  Yours faithfully,  God.
32.
Studies in Subjective Probability, 2nd ed., edited by H. E. Kyburg, Jr., and H. E. Smokler (Krieger, Huntington, NY, 1980).
33.
E. T. Jaynes, Probability Theory: The Logic of Science, available for download on the World Wide Web at http://bayes.wustl.edu/. This huge book was unfortunately never finished due to Prof. Jaynes’ death in 1998. Nevertheless, it stands as perhaps the most complete and persuasive document in the field.
34.
J. M. Bernardo and A. F. M. Smith, Bayesian Theory (Wiley, Chichester, 1994).
35.
R.
Schack
and
C. M.
Caves
,
Phys. Rev. E
53
,
3257
(
1996
).
36.
B. de Finetti, Theory of Probability (Wiley, New York, 1990).
37.
For a collection de Finetti’s original papers and their translations into English, see Probabilità e Induzione—Induction and Probability, edited by P. Monari and D. Cocchi (Biblioteca di Statistica, CLUEB, Bologna, 1993).
38.
R. L.
Hudson
and
G. R.
Moody
,
Z. Wahrscheinlichkeitstheor. Verwandte Geb.
33
,
343
(
1976
).
39.
R. L.
Hudson
,
Found. Phys.
11
,
805
(
1981
).
40.
R.
Schack
,
T. A.
Brun
, and
C. M.
Caves
,
Phys. Rev. A
64
,
014305
(
2001
).
41.
For an emphasis of this point in the setting of quantum cryptography, see
C. A.
Fuchs
and
K.
Jacobs
,
Phys. Rev. A
63
,
062305
(
2001
).
42.
D.
Heath
and
W.
Sudderth
,
Am. Stat.
30
(
4
),
188
(
1976
).
43.
M. C.
Galavotti
,
Erkenntnis
31
,
239
(
1989
).
44.
R.
Jeffrey
,
Erkenntnis
45
,
327
(
1997
).
45.
E. T. Jaynes, “Predictive Statistical Mechanics,” in Frontiers of Nonequilibrium Statistical Physics, edited by G. T. Moore and M. O. Scully (Plenum, New York, 1986), p. 33.
46.
L.
Daston
,
Hist. Math.
21
,
330
(
1994
).
47.
L. J. Savage, The Foundations of Statistics (Dover, New York, 1972).
48.
An entertaining account of a serious attempt to make money from this idea can be found in T. A. Bass, The Newtonian Casino (Penguin, London, 1991), previously published as The Eudaemonic Pie: Or why Would Anyone Play Roulette without a Computer in His Shoe (Houghton Mifflin, New York, 1985).
49.
R. N. Giere, “Objective Single-Case Probabilities and the Foundations of Statistics,” in Logic, Methodology and Philosophy of Science IV, edited by P. Suppes, L. Henkin, A. Jojo, and G. C. Moisil (North-Holland, Amsterdam, 1973), p. 467.
50.
J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, Cambridge, 1987).
51.
More carefully, we should have said, “Without a stretch of the imagination.” For a stretch of the imagination, see Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J. T. Cushing, A. Fine, and S. Goldstein (Kluwer, Dordrecht, 1996).
52.
E. T. Jaynes, “Some Applications and Extensions of the de Finetti Representation Theorem,” in Bayesian Inference and Decision Techniques, edited by P. Goel and A. Zellner (Elsevier, Amsterdam, 1986), p. 31.
53.
J.
von Plato
,
Erkenntnis
31
,
263
(
1989
).
54.
A.
Peres
,
Phys. Rev. A
61
,
022116
(
2000
).
55.
V.
Scarani
,
W.
Tittel
,
H.
Zbinden
, and
N.
Gisin
,
Phys. Lett. A
276
,
1
(
2000
).
56.
E.
Schrödinger
,
Proc. Cambridge Philos. Soc.
32
,
446
(
1936
).
57.
L. P.
Hughston
,
R.
Jozsa
, and
W. K.
Wootters
,
Phys. Lett. A
183
,
14
(
1993
).
58.
E.
Størmer
,
J. Funct. Anal.
3
,
48
(
1969
).
59.
C. H.
Bennett
,
D. P.
DiVincenzo
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. A
54
,
3824
(
1996
).
60.
N. D.
Mermin
,
Phys. Today
43
(
6
),
9
(
1990
);
N. D.
Mermin
,
Am. J. Phys.
58
,
731
(
1990
).
Mermin was the first to point out the interesting properties of this three-system state, following the lead of D. M. Greenberger, M. Horne, and A. Zeilinger, “Going beyond Bell’s Theorem,” in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69, where a similar four-system state was proposed. We call attention, however, to the pronunciational perils of calling the state a “GHZM state” and therefore defer to the now standard label GHZ.
See also
D. M.
Greenberger
,
M. A.
Horne
,
A.
Shimony
, and
A.
Zeilinger
,
Am. J. Phys.
58
,
1131
(
1990
).
61.
M.
Koashi
,
V.
Bužek
, and
N.
Imoto
,
Phys. Rev. A
62
,
050302
(
2000
).
62.
A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, The Netherlands, 1993).
63.
K. Kraus, States, Effects, and Operations. Fundamental Notions of Quantum Theory (Springer, Berlin, 1983), Lecture Notes in Physics, Vol. 190.
64.
E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley, New York, 1970);
C. Cohen-Tannoudji, Quantum Mechanics, 2nd revised enlarged edition (Wiley, New York, 1977).
65.
J. von Neumann, Mathematical Foundations of Quantum Mechanics, translated by T. A. Beyer (Princeton University Press, Princeton, 1955);
P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Oxford University Press, Oxford, 1958).
66.
A. S.
Holevo
,
Probl. Inf. Transm.
9
,
110
(
1973
).
67.
E.
Prugovečki
,
Int. J. Theor. Phys.
16
,
321
(
1977
).
68.
Indeed, this kind of attitude appears to be the point of departure for all the previous proofs and discussions of the quantum de Finetti theorem in the literature. See Refs. 38, 39, and 58 and also Ref. 69.
69.
D.
Petz
,
Prob. Th. Rel. Fields
85
,
1
(
1990
);
A.
Bach
,
Europhys. Lett.
16
,
513
(
1991
);
L.
Accardi
and
Y. G.
Lu
,
Ann. Prob.
21
,
1478
(
1993
);
A. Bach, Indistinguishable Classical Particles (Springer, Berlin, 1997), Lecture Notes in Mathematics, New Series, Vol. m44;
R. L.
Hudson
, “
Some Properties of Reduced Density Operators
,”
Int. J. Quantum Chem.
74
,
595
(
1999
).
70.
For an example that has spurred a lot of mathematical interest, see F. Hiai and D. Petz, The Semicircle Law, Free Random Variables, and Entropy (American Mathematical Society, Providence, RI, 2000).
71.
J. A. Wheeler, “‘A Practical Tool,’ But Puzzling, Too,” in The New York Times, 12 December 2000.
72.
C. M.
Caves
,
C. A.
Fuchs
, and
P.
Rungta
,
Found. Phys. Lett.
14
,
199
(
2001
).
73.
For a small sampling of more recent considerations, see
G. M.
D’Ariano
,
L.
Maccone
, and
M. G. A.
Paris
,
J. Phys. A
34
,
93
(
2001
);
S.
Weigert
,
Phys. Rev. Lett.
84
,
802
(
2000
);
V.
Bužek
,
G.
Drobný
,
R.
Derka
,
G.
Adam
, and
H.
Wiedemann
,
Chaos, Solitons Fractals
10
,
981
(
1999
).
74.
This question appears to have been considered much earlier than the current interest:
W.
Band
and
J. L.
Park
,
Found. Phys.
1
,
133
(
1970
);
J. L.
Park
and
W.
Band
,
Found. Phys.
1
,
211
(
1971
);
W.
Band
and
J. L.
Park
,
Found. Phys.
1
,
339
(
1971
).
75.
A.
Fujiwara
and
H.
Nagaoka
,
IEEE Trans. Inf. Theory
44
,
1071
(
1998
).
76.
One can get a feeling for this from the large review article, D. J. Aldous, “Exchangeability and Related Topics,” in École d’Été de Probabilités de Saint-Flour XIII-1983, edited by P. L. Hennequin, Lecture Notes in Mathematics Vol. 1117 (Springer-Verlag, Berlin, 1985), pp. 1–198.
77.
P.
Diaconis
,
Synthese
36
,
271
(
1977
);
P.
Diaconis
and
D.
Freedman
,
Ann. Prob.
8
,
745
(
1980
).
78.
D. Gottesman, private communication, January 2000.
This content is only available via PDF.
You do not currently have access to this content.