Quantum compiling addresses the problem of approximating an arbitrary quantum gate with a string of gates drawn from a particular finite set. It has been shown that this is possible for almost all choices of base sets and, furthermore, that the number of gates required for precision ε is only polynomial in Here we prove that using certain sets of base gates quantum compiling requires a string length that is linear in a result which matches the lower bound from counting volume up to constant factor.
REFERENCES
1.
C. H.
Bennett
and D. P.
DiVincenzo
, Nature (London)
404
, 247
(2000
).2.
C. H.
Bennett
and P. W.
Shor
, IEEE Trans. Inf. Theory
44
, 2724
(1998
).3.
4.
D. Aharonov, in Annual Reviews of Computational Physics VI, edited by D. Stauffer (World Scientific, Singapore, 1999).
5.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
6.
7.
D.
Gottesman
, arXive e-print quant-ph/9702029.8.
P. O.
Boykin
et al., 40th Annual Symposium on Foundations of Computer Science 486 (1999
), arXive e-print quant-ph/9906054.9.
10.
11.
12.
R. Solovay, “Lie Groups and Quantum Circuits,” MSRI, http://www.msri.org/publications/ln/msri/2000/qcomputing/solovay/I/, 2000.
13.
14.
A. W. Harrow, “Quantum compiling,” undergraduate thesis, MIT Physics, 2001.
15.
16.
A.
Lubotsky
, R.
Phillips
, and P.
Sarnak
, Commun. Pure Appl. Math.
39
, S149
(1986
).17.
A.
Lubotsky
, R.
Phillips
, and P.
Sarnak
, Commun. Pure Appl. Math.
40
, 401
(1987
).18.
P.
Diaconis
and L.
Saloff-Coste
, Commun. Math. Phys.
209
, 729
(2000
).19.
20.
A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, in preparation.
21.
R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1997).
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.