Quantum compiling addresses the problem of approximating an arbitrary quantum gate with a string of gates drawn from a particular finite set. It has been shown that this is possible for almost all choices of base sets and, furthermore, that the number of gates required for precision ε is only polynomial in log 1/ε. Here we prove that using certain sets of base gates quantum compiling requires a string length that is linear in log 1/ε, a result which matches the lower bound from counting volume up to constant factor.

1.
C. H.
Bennett
and
D. P.
DiVincenzo
,
Nature (London)
404
,
247
(
2000
).
2.
C. H.
Bennett
and
P. W.
Shor
,
IEEE Trans. Inf. Theory
44
,
2724
(
1998
).
3.
E.
Rieffel
and
W.
Polak
, arXive e-print quant-ph/9809016.
4.
D. Aharonov, in Annual Reviews of Computational Physics VI, edited by D. Stauffer (World Scientific, Singapore, 1999).
5.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
6.
J.
Preskill
,
Proc. R. Soc. London, Ser. A
454
,
385
(
1998
).
7.
D.
Gottesman
,
Phys. Rev. A
57
,
127
(
1998
);
D.
Gottesman
, arXive e-print quant-ph/9702029.
8.
P. O.
Boykin
et al., 40th Annual Symposium on Foundations of Computer Science 486 (
1999
), arXive e-print quant-ph/9906054.
9.
D.
Aharonov
and
M.
Ben-Or
, arXive e-print quant-ph/9906129.
10.
S.
Lloyd
,
Phys. Rev. Lett.
75
,
346
(
1995
).
11.
D.
Deutsch
,
A.
Barenco
, and
A.
Ekert
,
Proc. R. Soc. London, Ser. A
449
,
669
(
1995
).
12.
R. Solovay, “Lie Groups and Quantum Circuits,” MSRI, http://www.msri.org/publications/ln/msri/2000/qcomputing/solovay/I/, 2000.
13.
A. Y.
Kitaev
,
Russ. Math. Surveys
52
,
1191
(
1997
).
14.
A. W. Harrow, “Quantum compiling,” undergraduate thesis, MIT Physics, 2001.
15.
V. I.
Arnold
and
A. L.
Krylov
,
Sov. Math. Dokl.
4
,
1
(
1962
).
16.
A.
Lubotsky
,
R.
Phillips
, and
P.
Sarnak
,
Commun. Pure Appl. Math.
39
,
S149
(
1986
).
17.
A.
Lubotsky
,
R.
Phillips
, and
P.
Sarnak
,
Commun. Pure Appl. Math.
40
,
401
(
1987
).
18.
P.
Diaconis
and
L.
Saloff-Coste
,
Commun. Math. Phys.
209
,
729
(
2000
).
19.
E.
Bernstein
and
U.
Vazirani
,
SIAM J. Comput.
26
,
1411
(
1997
);
E.
Bernstein
and
U.
Vazirani
, arXive e-print quant-ph/9701001.
20.
A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, in preparation.
21.
R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1997).
This content is only available via PDF.
You do not currently have access to this content.