We study the visible compression of a source E={|φi〉,pi} of pure quantum signal states or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade-off curve Q*(R), where Q*(R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade-off function by a simple formula in terms of only single-signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parametrized states. We also show that our result leads to a number of corollaries characterizing the trade-off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so-called remote state preparation problem. Finally, we develop a probability-free version of our main result which may be interpreted as an answer to the question: “How many classical bits does a qubit cost?” This theorem provides a type of dual to Holevo’s theorem, insofar as the latter characterizes the cost of coding classical bits into qubits.

1.
C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), pp. 175–179.
2.
H.
Lo
,
J. Phys. A
34
,
6957
(
2001
).
3.
D.
Mayers
,
J. ACM
48
,
351
(
2001
).
4.
D.
Deutsch
and
R.
Jozsa
,
Proc. R. Soc. London, Ser. A
439
,
553
(
1992
).
5.
P.
Shor
, “Algorithms for quantum computation: discrete logarithms and factoring (Extended abstract),” in Proceedings of 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1994).
Full version in
P.
Shor
,
SIAM J. Comput.
26
,
1484
(
1997
).
6.
D.
Simon
, “On the power of quantum computation (Extended abstract),” in Proceedings of 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1994).
Full version in
D.
Simon
,
SIAM J. Comput.
26
,
1474
(
1997
).
7.
A. S.
Holevo
,
IEEE Trans. Inf. Theory
44
,
269
(
1998
).
8.
B.
Schumacher
and
M. D.
Westmoreland
,
Phys. Rev. A
56
,
131
(
1997
).
9.
C. H.
Bennett
,
H. J.
Bernstein
,
S.
Popescu
, and
B.
Schumacher
,
Phys. Rev. A
53
,
2046
(
1996
).
10.
H.
Barnum
,
C. A.
Fuchs
,
R.
Jozsa
, and
B.
Schumacher
,
Phys. Rev. A
54
,
4707
(
1996
).
11.
R.
Jozsa
and
B.
Schumacher
,
J. Mod. Opt.
41
,
2343
(
1994
).
12.
B.
Schumacher
,
Phys. Rev. A
51
,
2738
(
1995
).
13.
H.
Barnum
,
P.
Hayden
,
R.
Jozsa
, and
A.
Winter
,
Proc. R. Soc. London, Ser. A
457
(
2012
),
2019
(
2001
).
14.
A. S.
Holevo
, Problemy Peredaći Informacii, 9(3)3-11 (1973). English translation: A. S. Holevo,
Probl. Inf. Transm.
9
,
177
(
1973
).
15.
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
);
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
623
(
1948
).
16.
H.-K.
Lo
,
Phys. Rev. A
62
,
012313
(
2000
).
17.
C. H.
Bennett
,
D. P.
DiVincenzo
,
P. W.
Shor
,
J. A.
Smolin
,
B. M.
Terhal
, and
W. K.
Wootters
,
Phys. Rev. Lett.
87
,
077902
(
2001
).
18.
W. K.
Wootters
and
W. H.
Zurek
,
Nature (London)
299
,
802
(
1982
).
19.
M.
Koashi
and
N.
Imoto
,
Phys. Rev. Lett.
87
,
017902
(
2001
).
Based on:
M.
Koashi
and
N.
Imoto
, “
What is possible without disturbing partially known quantum states?
quant-ph/0101144
2001
.
20.
M.
Fannes
,
Commun. Math. Phys.
31
,
291
(
1973
).
21.
G.
Kuperberg
, “
The capacity of hybrid quantum memory
,” quant-ph/0203105
2002
.
22.
C. H.
Bennett
,
P. W.
Shor
,
J. A.
Smolin
, and
A. V.
Thapliyal
,
Phys. Rev. Lett.
83
,
3081
(
1999
);
C. H.
Bennett
,
P. W.
Shor
,
J. A.
Smolin
, and
A. V.
Thapliyal
, “
Entanglement-assisted capacity of a quantum channel and the reverse Shannon theoreni
,” quant-ph/0106052
2001
.
23.
I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems (Academic, London, 1981).
24.
J. Wolfowitz, Coding Theorems of Information Theory, 2nd ed. (Springer-Verlag, Berlin, 1964).
25.
A. Winter, “Coding Theorems of Quantum Information Theory,” Ph.D. thesis, Universität Bielefeld, 1999 (unpublished);
electronically, http://archiv.ub.uni-bielefeld.de/disshabi/mathe.htm;
as e-print, quant-ph/9907077.
26.
R.
Ahlswede
,
Z. Wahrscheinlichkeitstheor. Verwandte Geb.
44
,
159
(
1978
).
27.
R. Jozsa and A. Winter, “Compression of sources of probability distributions and density operators,” in preparation (2002).
28.
H.
Chernoff
,
Ann. Math. Stat.
23
,
493
(
1952
).
29.
W.
Hoeffding
,
J. Am. Stat. Assoc.
58
,
13
(
1963
).
30.
I.
Devetak
and
T.
Berger
,
Phys. Rev. Lett.
87
,
197901
(
2001
).
31.
R.
Ahlswede
,
J. Combin. Inform. System Sci.
4
,
176
(
1979
).
32.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
,
Phys. Rev. Lett.
70
,
1895
(
1993
).
33.
C. H. Bennett, P. Hayden, D. W. Leung, P. W. Shor, and A. Winter, “Remote state preparation,” in preparation (2002).
34.
P. R. Halmos, Measure Theory (Van Nostrand, New York, 1950).
35.
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., Vol. II, 2nd ed. (Wiley, New York, 1968, 1971).
36.
R. M. Gray, Entropy and Information Theory (Springer-Verlag, New York, 1990).
37.
M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, Berlin, 1993).
38.
G. M. Ziegler, Lectures on Polytopes (Springer-Verlag, New York, 1995).
This content is only available via PDF.
You do not currently have access to this content.