A graphical formalism is introduced for describing subgroup type coordinates on n-dimensional Lorentzian hyperboloids imbedded into n+1 dimensional Minkowski spaces. The O(n,1) group element is parametrized according to different subgroup chains, involving Lorentz, rotation, and Euclidean subgroups. The coordinates are then induced by the corresponding group action. Eigenfunctions of the Laplace–Beltrami operator are obtained as products of Jacobi functions, associated Legendre functions, and modified Bessel functions.

1.
N. Ya.
Vilenkin
and
Ya. A.
Smorodinskii
,
Sov. Phys. JETP
19
,
1209
(
1964
).
2.
P.
Winternitz
and
Ya. A.
Smorodinskii
,
Sov. J. Nucl. Phys.
1
,
113
(
1965
).
3.
P.
Winternitz
and
I.
Friš
,
Sov. J. Nucl. Phys.
1
,
636
(
1965
).
4.
P.
Winternitz
,
I.
Lukac
, and
Ya. A.
Smorodinskii
,
Sov. J. Nucl. Phys.
7
,
139
(
1968
).
5.
P.
Winternitz
,
Ya. A.
Smorodinskii
, and
M. B.
Sheftel
,
Sov. J. Nucl. Phys.
7
,
785
(
1968
).
6.
J.
Patera
and
P.
Winternitz
,
J. Math. Phys.
14
,
1130
(
1973
).
7.
E. G.
Kalnins
and
W.
Miller
, Jr.
,
J. Math. Phys.
15
,
1263
(
1974
).
8.
W.
Miller
, Jr.
,
J.
Patera
, and
P.
Winternitz
,
J. Math. Phys.
22
,
251
(
1981
).
9.
W. Miller, Jr., Symmetry and Separation of Variables (Addison–Wesley, Reading, MA, 1977).
10.
E. G. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature (Longman, Burnt Mill, 1986).
11.
N. Ya.
Vilenkin
,
Mat. Sb.
68
,
432
(
1965
) (in Russian).
12.
N. Ya. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, RI, 1968).
13.
N. Ya.
Vilenkin
,
G. I.
Kuznetsov
, and
Ya. A.
Smorodinskii
,
Sov. J. Nucl. Phys.
2
,
645
(
1965
);
N. Ya.
Vilenkin
,
G. I.
Kuznetsov
, and
Ya. A.
Smorodinskii
, [
Yad. Fiz.
2
,
906
(
1965
)].
14.
G. I. Kuznetsov, S. S. Moskalyuk, Yu. F. Smirnov, and V. P. Shelest, Graficheskaya Teoriya Predstavlenii Ortogonal’nyh i Unitarnyh Grupp i ee Fizicheskie Prilozheniya (Kiev, Naukova Dumka, 1992) (in Russian).
15.
A. A.
Izmest’ev
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
P.
Winternitz
,
J. Math. Phys.
40
,
1549
(
1999
).
16.
J.
Patera
,
R. T.
Sharp
,
P.
Winternitz
, and
H.
Zassenhaus
,
J. Math. Phys.
18
,
2259
(
1977
).
17.
P. Winternitz, “Lie groups and solutions of nonlinear partial differential equations,” in Integrable Systems Quantum Groups and Quantum Field Theories, edited by A. Ibort and M. A. Rodriguez (Kluwer, Dordrecht, 1993), pp. 429–495.
18.
V.
Hussin
,
P.
Winternitz
, and
H.
Zassenhaus
,
Linear Algebr. Appl.
173
,
125
(
1992
).
19.
Z.
Thomova
and
P.
Winternitz
,
J. Phys. A
31
,
1831
(
1998
).
20.
Z.
Thomova
and
P.
Winternitz
,
Linear Algebr. Appl.
291
,
245
(
1999
).
21.
A. Erdelyi et al., Higher Transcendental Functions I and II (McGraw–Hill, New York, 1953).
22.
I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products (Academic, New York, 2000).
23.
E. G.
Kalnins
and
W.
Miller
, Jr.
,
J. Math. Phys.
27
,
1721
(
1986
).
24.
A. A.
Izmest’ev
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
P.
Winternitz
,
J. Phys. A
29
,
5940
(
1996
).
25.
A. A.
Izmest’ev
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
P.
Winternitz
,
J. Phys. A
34
,
521
(
2001
).
26.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
,
J. Phys. A
32
,
4709
(
1999
).
27.
A. A.
Izmest’ev
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
P.
Winternitz
,
Int. J. Mod. Phys. A
12
,
53
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.