We extend the recursion formula for matrix Bessel functions, which we obtained previously, to superspace. It is sufficient to do this for the unitary orthosymplectic supergroup. By direct computations, we show that fairly explicit results can be obtained, at least up to dimension 8×8 for the supermatrices. Since we introduce a new technique, we discuss various of its aspects in some detail.

1.
T.
Guhr
and
H.
Kohler
,
J. Math. Phys.
43
,
2707
(
2002
), preceding paper;
T.
Guhr
and
H.
Kohler
, math-ph/0011007.
2.
F. A. Berezin, Introduction to Superanalysis, (Reidel, Dordrecht, 1987), Vol. 9.
3.
V. C.
Kac
,
Commun. Math. Phys.
53
,
31
(
1977
).
4.
V. C.
Kac
,
Adv. Math.
26
,
8
(
1977
).
5.
K. B.
Efetov
,
Adv. Phys.
32
,
53
(
1983
).
6.
K. B. Efetov, Supersymmetry in Disorder and Chaos, (Cambridge University Press, Cambridge, 1997).
7.
J. J. M.
Verbaarschot
and
M. R.
Zirnbauer
,
Ann. Phys. (N.Y.)
158
,
78
(
1984
).
8.
J. J. M.
Verbaarschot
,
H. A.
Weidenmüller
, and
M. R.
Zirnbauer
,
Phys. Rep.
129
,
367
(
1985
).
9.
T.
Guhr
,
J. Math. Phys.
32
,
336
(
1991
).
10.
C.
Itzykson
and
J. B.
Zuber
,
J. Math. Phys.
21
,
411
(
1980
).
11.
T.
Guhr
,
Commun. Math. Phys.
176
,
555
(
1996
).
12.
I. M.
Gelfand
and
M. L.
Tzetlin
,
Dokl. Akad. Nauk SSSR
71
,
825
(
1950
).
13.
S. L.
Shatashvili
,
Commun. Math. Phys.
154
,
421
(
1993
).
14.
J.
Alfaro
,
R.
Medina
, and
L.
Urrutia
,
J. Math. Phys.
36
,
3085
(
1995
).
15.
T.
Guhr
and
H. A.
Weidenmüller
,
Ann. Phys. (N.Y.)
199
,
412
(
1990
).
16.
M. R.
Zirnbauer
,
Commun. Math. Phys.
141
,
503
(
1991
).
17.
M. R.
Zirnbauer
,
Phys. Rev. Lett.
69
,
1584
(
1992
).
18.
A. D.
Mirlin
,
A.
Müller-Groeling
, and
M. R.
Zirnbauer
,
Ann. Phys. (N.Y.)
236
,
325
(
1994
).
19.
M. L. Mehta, Random Matrices, 2nd ed. (Academic, San Diego, 1991).
20.
F. Haake, Quantum Signatures of Chaos, 2nd ed. (Springer, Berlin, 2001).
21.
T.
Guhr
,
A.
Müller-Groeling
, and
H. A.
Weidenmüller
,
Phys. Rep.
299
,
189
(
1998
).
22.
T.
Guhr
,
Ann. Phys. (N.Y.)
250
,
145
(
1996
).
23.
F. J.
Wegner
,
Z. Phys. B: Condens. Matter
49
,
297
(
1983
).
24.
M. J.
Rothstein
,
Trans. Am. Math. Soc.
299
,
387
(
1987
).
25.
T. Guhr and H. Kohler (unpublished).
26.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th ed. (Dover, New York, 1970).
27.
Harish-Chandra
,
Am. J. Math.
80
,
241
(
1958
).
28.
R. J. Muirhead, Aspects of Multivariate Statistical Theory, (Wiley, New York, 1982).
29.
P. J.
Forrester
and
T.
Nagao
,
Nucl. Phys. B
532
,
733
(
1998
).
30.
N.
Datta
and
H.
Kunz
, cond-mat/0006488.
31.
M. R.
Zirnbauer
,
J. Math. Phys.
37
,
4986
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.