A class of spherical functions is studied which can be viewed as the matrix generalization of Bessel functions. We derive a recursive structure for these functions. We show that they are only special cases of more general radial functions which also have a properly generalized, recursive structure. Some explicit results are worked out. For the first time, we identify a subclass of such radial functions which consist of a finite number of terms only.

1.
Harish-Chandra
,
Am. J. Math.
79
,
87
(
1957
).
2.
I. M.
Gelfand
,
Dokl. Akad. Nauk SSSR
70
,
5
(
1950
).
3.
S. Helgason, Groups and Geometric Analysis (Academic, San Diego, 1984).
4.
Harish-Chandra
,
Am. J. Math.
80
,
241
(
1958
).
5.
M. A.
Olshanetsky
and
A. M.
Perelomov
,
Phys. Rep.
94
,
313
(
1983
).
6.
C.
Itzykson
and
J. B.
Zuber
,
J. Math. Phys.
21
,
411
(
1980
).
7.
C. S.
Hertz
,
Ann. Math.
61
,
474
(
1955
).
8.
K. I.
Gross
and
R. A.
Kunze
,
J. Funct. Anal.
22
,
73
(
1976
).
9.
K. I.
Gross
and
R. A.
Kunze
,
J. Funct. Anal.
25
,
1
(
1977
).
10.
W. J.
Holman
,
J. Math. Phys.
21
,
1977
(
1980
).
11.
A.
Okounkov
and
G.
Olshanski
,
Math. Res. Lett.
4
,
69
(
1997
).
12.
M.
Kontsevich
,
Commun. Math. Phys.
147
,
1
(
1992
).
13.
J. J.
Duistermaat
and
G. J.
Heckman
,
Invent. Math.
69
,
259
(
1982
).
14.
R. J. Szabo, Equivariant Cohomology and Localization of Path Integrals, Lecture Notes in Physics, New Series M, monographs; 63 (Springer, Heidelberg, 2000).
15.
M. L. Mehta, Random Matrices, 2nd ed. (Academic, San Diego, 1990).
16.
F. Haake, Quantum Signatures of Chaos, 2nd ed. (Springer, Berlin, 2001).
17.
T.
Guhr
,
A.
Müller-Groeling
, and
H. A.
Weidenmüller
,
Phys. Rep.
299
,
189
(
1998
).
18.
F. J.
Dyson
,
J. Math. Phys.
1
,
140
(
1962
).
19.
F. J.
Dyson
,
J. Math. Phys.
1
,
1191
(
1962
).
20.
R. J. Muirhead, Aspects of Multivariate Statistical Theory (Wiley, New York, 1982).
21.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th ed. (Dover, New York, 1970).
22.
R. Gilmore, Lie Groups, Lie Algebras and Some of their Applications (Wiley, New York, 1974).
23.
L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (American Physical Society, Providence, 1963).
24.
I. M.
Gelfand
and
M. L.
Tzetlin
,
Dokl. Akad. Nauk SSSR
71
,
825
(
1950
).
25.
S. L.
Shatashvili
,
Commun. Math. Phys.
154
,
421
(
1993
).
26.
T.
Guhr
,
Commun. Math. Phys.
176
,
555
(
1996
).
27.
T.
Guhr
and
H.
Kohler
, math-ph/0011007.
28.
E.
Brézin
and
S.
Hikami
, math-ph/0103012;
Commun. Math. Phys. (in press).
29.
H. Risken, The Fokker–Planck Equation (Springer, Berlin, 1989).
30.
F.
Calogero
,
J. Math. Phys.
10
,
2191
(
1969
).
31.
B. M.
Sutherland
,
Phys. Rev. A
5
,
1372
(
1972
).
32.
C. W.
Beenakker
and
B.
Rejaei
,
Phys. Rev. B
49
,
7499
(
1994
).
33.
M.
Caselle
,
Phys. Rev. Lett.
74
,
2776
(
1995
).
34.
R. P.
Stanley
,
Adv. Math.
77
,
76
(
1989
).
35.
P. J.
Forrester
,
Mod. Phys. Lett. B
9
,
359
(
1995
).
36.
Z. N. C.
Ha
,
Nucl. Phys. B
435
,
604
(
1995
).
37.
P. J.
Forrester
and
T.
Nagao
,
Nucl. Phys. B
532
,
733
(
1998
).
38.
A.
Pandey
,
Chaos, Solitons Fractals
5
,
1275
(
1995
).
39.
G. Olshanski (private communication).
40.
T.
Guhr
and
H.
Kohler
,
J. Math. Phys.
43
,
2741
(
2002
), following paper;
T.
Guhr
and
H.
Kohler
, math-ph/0012047.
41.
N.
Ullah
,
J. Math. Phys.
4
,
1279
(
1963
).
42.
N. Ullah, Matrix Ensembles in the Many-Nucleon Problem (Clarendon, Oxford, 1987).
43.
Y. V.
Fyodorov
and
B. A.
Khoruzhenko
,
Phys. Rev. Lett.
83
,
65
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.