Corresponding to each finite dimensional simple basic classical Lie superalgebra, a new quantum enveloping superalgebra is introduced, which has the structure of a braided quasi-Hopf superalgebra. In the case of this quantum enveloping superalgebra is shown to be isomorphic to the standard Drinfeld–Jimbo quantum superalgebra as braided quasi Hopf superalgebras. The new quantum enveloping superalgebras are applied to construct link invariants, from which Vassiliev invariants can be readily extracted. This, in particular, provides a useful construction for the Vassiliev invariants associated with
REFERENCES
1.
R. B.
Zhang
, A. J.
Bracken
, and M. D.
Gould
, Phys. Lett. B
257
, 133
(1991
).2.
R.
Floreanini
, D. A.
Leites
, and L.
Vinet
, Lett. Math. Phys.
23
, 127
(1991
);3.
S. M.
Khoroshkin
and V. N.
Tolstoy
, Commun. Math. Phys.
141
, 599
(1991
).4.
T. D.
Palev
, N. I.
Stoilova
, and J.
Van der Jeugt
, Commun. Math. Phys.
166
, 367
(1994
);5.
6.
M. Scheunert, “Quantum supergroup and -invariant Weyle superalgebras,” J. Math. Phys. (in press).
7.
8.
9.
10.
11.
Y. I. Manin, Quantum Groups and Noncommutative Geometry, Les publications du Centre de Recherches Mathématiques, Universiité de Montréal (1988).
12.
13.
M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics 716 (Springer, Berlin, 1979).
14.
15.
16.
V. G. Turaev, Quantum Invariants of Knots and 3-manifolds (de Gruyter, Berlin, 1994).
17.
18.
19.
20.
21.
22.
23.
C. Kassel, Quantum Groups (Springer-Verlag, Berlin, 1994).
24.
25.
R. B.
Zhang
, M. D.
Gould
, and A. J.
Bracken
, J. Phys. A
24
, 1185
(1991
).26.
This is pointed out to me by M. Scheunert.
27.
28.
29.
30.
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.