Corresponding to each finite dimensional simple basic classical Lie superalgebra, a new quantum enveloping superalgebra is introduced, which has the structure of a braided quasi-Hopf superalgebra. In the case of osp(1|2n), this quantum enveloping superalgebra is shown to be isomorphic to the standard Drinfeld–Jimbo quantum superalgebra Uq(osp(1|2n)) as braided quasi Hopf superalgebras. The new quantum enveloping superalgebras are applied to construct link invariants, from which Vassiliev invariants can be readily extracted. This, in particular, provides a useful construction for the Vassiliev invariants associated with Uq(osp(1|2n)).

1.
R. B.
Zhang
,
A. J.
Bracken
, and
M. D.
Gould
,
Phys. Lett. B
257
,
133
(
1991
).
2.
R.
Floreanini
,
D. A.
Leites
, and
L.
Vinet
,
Lett. Math. Phys.
23
,
127
(
1991
);
M.
Scheunert
,
Lett. Math. Phys.
34
,
320
(
1993
);
H.
Yamane
,
Proc. Jpn. Acad., Ser. A: Math. Sci.
70
,
31
(
1994
).
3.
H.
Yamane
,
Proc. Jpn. Acad., Ser. A: Math. Sci.
67
,
108
(
1991
);
S. M.
Khoroshkin
and
V. N.
Tolstoy
,
Commun. Math. Phys.
141
,
599
(
1991
).
4.
T. D.
Palev
and
V. N.
Tolstoy
,
Commun. Math. Phys.
141
,
549
(
1991
);
R. B.
Zhang
,
J. Math. Phys.
34
,
1236
(
1993
);
T. D.
Palev
,
N. I.
Stoilova
, and
J.
Van der Jeugt
,
Commun. Math. Phys.
166
,
367
(
1994
);
R. B.
Zhang
,
Lett. Math. Phys.
37
,
419
(
1996
);
R. B.
Zhang
,
J. Math. Phys.
38
,
535
(
1997
).
5.
R. B.
Zhang
,
Commun. Math. Phys.
195
,
525
(
1998
);
H. C.
Lee
and
R. B.
Zhang
,
J. Math. Phys.
40
,
3175
(
1999
).
6.
Y. I.
Manin
,
Commun. Math. Phys.
123
,
163
(
1989
);
V. K.
Dobrev
and
E. H.
Tahri
,
Int. J. Mod. Phys. A
13
,
433
(
1998
);
M. Scheunert, “Quantum supergroup SPOq(2n|2m) and SPOq(2n|2m)-invariant Weyle superalgebras,” J. Math. Phys. (in press).
7.
M. J.
Martins
,
Phys. Lett. B
359
,
334
(
1995
);
A. J.
Bracken
et al.,
Phys. Rev. Lett.
74
,
2768
(
1995
).
8.
R. B.
Zhang
,
Rev. Mod. Phys.
7
,
809
(
1995
).
9.
R. B.
Zhang
,
J. Math. Phys.
33
,
3918
(
1992
);
J.
Links
,
M. D.
Gould
, and
R. B.
Zhang
,
Rev. Mod. Phys.
5
,
345
(
1993
).
10.
R. B.
Zhang
and
H. C.
Lee
,
Mod. Phys. Lett. A
11
,
2397
(
1996
).
11.
Y. I. Manin, Quantum Groups and Noncommutative Geometry, Les publications du Centre de Recherches Mathématiques, Universiité de Montréal (1988).
12.
M.
Gerstenhaber
,
Ann. Math.
79
,
59
(
1964
).
13.
V. G.
Kac
,
Adv. Math.
26
,
8
(
1977
);
M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics 716 (Springer, Berlin, 1979).
14.
V. G.
Drinfeld
,
Leningrad Math. J
1
,
1419
(
1990
);
V. G.
Drinfeld
,
Leningrad Math. J
2
,
829
(
1991
).
15.
N. Y.
Reshetikhin
and
V. G.
Turaev
,
Invent. Math.
10
,
547
(
1991
).
16.
V. G. Turaev, Quantum Invariants of Knots and 3-manifolds (de Gruyter, Berlin, 1994).
17.
J.
Birman
and
X.
Lin
,
Invent. Math.
111
,
225
(
1993
).
18.
V. A.
Vassiliev
,
Adv. Sov. Math.
1
,
23
(
1990
);
M.
Kontsevich
,
Adv. Sov. Math.
16
,
137
(
1993
).
19.
D.
Bar-Natan
,
Topology
34
,
423
(
1995
);
T. T. Q.
Le
and
J.
Murakami
,
Compos. Math.
102
,
41
(
1996
).
20.
E.
Witten
,
Commun. Math. Phys.
121
,
351
(
1989
).
21.
M.
Scheunert
and
R. B.
Zhang
,
J. Math. Phys.
39
,
5024
(
1998
);
M.
Scheunert
and
R. B.
Zhang
,
Lett. Math. Phys.
49
,
333
(
1999
).
22.
P.
Cartier
,
C. R. Acad. Sci., Ser. I: Math.
361
,
1205
(
1993
).
23.
C. Kassel, Quantum Groups (Springer-Verlag, Berlin, 1994).
24.
J. W.
Milnor
and
J. C.
Moore
,
Ann. Math.
81
,
211
(
1965
).
25.
D.
Leites
and
V. V.
Serganova
,
Teor. Mat. Fiz.
58
,
26
(
1984
);
R. B.
Zhang
,
M. D.
Gould
, and
A. J.
Bracken
,
J. Phys. A
24
,
1185
(
1991
).
26.
This is pointed out to me by M. Scheunert.
27.
T. T. Q.
Le
and
J.
Murakami
,
Topology Appl.
62
,
193
(
1995
).
28.
R. B.
Zhang
,
Lett. Math. Phys.
25
,
317
(
1992
).
29.
M.
Gorelik
and
E.
Lanzmann
,
Invent. Math.
137
,
651
(
1999
);
E.
Lanzmann
, The Zhang transformation andUq(osp(1|2n))-Verma modules annihilators, math.QA/9911041.
30.
D.
Altschuler
and
A.
Coste
,
Commun. Math. Phys.
150
,
83
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.