We study mutually commutative difference operators introduced by Ruijsenaars, which are regarded as elliptic analogs of Macdonald operators and consist of the Jacobi theta functions and shift operators. These operators are constructed in terms of R-operators due to Shibukawa and Ueno or root algebras introduced by Cherednik, which give rise to a set of functional equations. We investigate solutions of these functional equations for generalizations of elliptic Ruijsenaars operators.

1.
Bourbaki, N. Groupes et Algèbre de Lie (Hermann, Paris, 1969).
2.
Buchstaber
,
V. M.
,
Felder
,
G.
, and
Veselov
,
A. P.
, “
Elliptic Dunkl operators, root systems and functional equations
,”
Duke Math. J.
76
,
885
911
(
1994
).
3.
Cherednik
,
I.
, “
Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators
,”
Int. Math. Res. Notices
9
,
171
180
(
1992
).
4.
Cherednik
,
I.
, “
Quantum Knizhnik-Zamolodchikov equations and affine root systems
,”
Commun. Math. Phys.
150
,
109
136
(
1992
).
5.
Humphreys, J. E., Reflection Groups and Coxeter Groups (Cambridge University Press, Cambridge, 1990).
6.
Komori
,
Y.
, “
Ruijsenaars’ commuting difference operators and invariant subspace spanned by theta functions
,”
J. Math. Phys.
42
,
4503
4522
(
2001
).
7.
Komori
,
Y.
and
Hikami
,
K.
, “
Elliptic K-matrix associated with Belavin’s symmetric R-matrix
,”
Nucl. Phys. B
494
,
687
701
(
1997
).
8.
Ochiai, H. and Oshima, T., “Commuting differential operators of type B2,” preprint, UTMS 94-65, Dept. of Mathematical Science, University of Tokyo, (1994).
9.
Oshima, T. and Sekiguchi, H., “Commuting families of differential operators invariant under the action of a Weyl group,” preprint, UTMS 93-43, Dept. of Mathematical Science, University of Tokyo (1993).
10.
Ruijsenaars
,
S. N. M.
, “
Complete integrability of relativistic Calogero-Moser systems and elliptic function identities
,”
Commun. Math. Phys.
110
,
191
213
(
1987
).
11.
Shibukawa
,
Y.
, “
Classification of R-operators
,”
J. Math. Phys.
42
,
2725
2745
(
2001
).
12.
Shibukawa
,
Y.
and
Ueno
,
K.
, “
Completely Z symmetric R matrix
,”
Lett. Math. Phys.
25
,
239
248
(
1992
).
13.
van Diejen
,
J. F.
, “
Integrability of difference Calogero-Moser systems
,”
J. Math. Phys.
35
,
2983
2998
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.