A time-dependent completely integrable Hamiltonian system is quantized with respect to time-dependent action-angle variables near an instantly compact regular invariant manifold. Its Hamiltonian depends only on action variables, and has a time-independent countable energy spectrum.

1.
H.
Lewis
and
W.
Riesenfeld
,
J. Math. Phys.
10
,
1458
(
1969
).
2.
A. Lichtenberg and M. Liebermann, Regular and Stochastic Motion (Springer, Berlin, 1983).
3.
A.
Dewisme
and
S.
Bouquet
,
J. Math. Phys.
34
,
997
(
1993
).
4.
S.
Bouquet
and
A.
Bourdier
,
Phys. Rev. E
57
,
1273
(
1998
).
5.
Dynamical Systems III, edited by V. Arnold (Springer, Berlin, 1988).
6.
V. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions (Springer, Berlin, 1993).
7.
J. Śniatycki, Geometric Quantization and Quantum Mechanics (Springer, Berlin, 1980).
8.
N. Woodhouse, Geometric Quantization (Clarendon, Oxford, 1992).
9.
A.
Echeverrı́a-Enrı́quez
,
M.
Muñoz-Lecanda
,
N.
Román-Roy
, and
C.
Victoria-Monge
,
Extracta Math.
13
,
135
(
1998
);
A.
Echeverrı́a-Enrı́quez
,
M.
Muñoz-Lecanda
,
N.
Román-Roy
, and
C.
Victoria-Monge
, E-print arXiv: math-ph/9904008.
10.
J.
Rawnsley
,
Trans. Am. Math. Soc.
230
,
235
(
1977
).
11.
R. Blattner, in “Differential geometric methods in mathematical physics (Proc. Sympos. Univ. Bonn, Bonn, 1975),” Lecture Notes in Mathematics Vol. 570 (Springer, New York, 1977), pp. 11–45.
12.
I.
Mykytiuk
,
A.
Prykarpatsky
,
R.
Andrushkiw
, and
V.
Samoilenko
,
J. Math. Phys.
35
,
1532
(
1994
).
13.
J.
Duistermaat
,
Commun. Pure Appl. Math.
33
,
687
(
1980
).
14.
L.
Bates
,
Proc. R. Soc. Edinburgh, Sect. A: Math.
110
,
27
(
1988
).
15.
T.
Hakioǧlu
and
E.
Tepedelenlioǧlu
,
J. Phys. A
33
,
6357
(
2000
).
16.
P.
Zanardi
and
M.
Rasetti
,
Phys. Lett. A
264
,
94
(
1999
).
17.
K.
Fujii
,
J. Math. Phys.
41
,
4406
(
2000
).
18.
J.
Pachos
and
P.
Zanardi
,
Int. J. Mod. Phys. B
15
,
1257
(
2001
).
19.
G.
Sardanashvily
,
J. Math. Phys.
39
,
2714
(
1998
).
20.
L. Mangiarotti and G. Sardanashvily, Gauge Mechanics (World Scientific, Singapore, 1998).
21.
V.
Arnold
,
Russ. Math. Surveys
18
,
13
(
1963
).
22.
R.
Kaushal
,
Int. J. Theor. Phys.
37
,
1793
(
1998
).
23.
H.
Lewis
,
O.
Leach
,
S.
Bouquet
, and
M.
Feix
,
J. Math. Phys.
33
,
591
(
1992
).
24.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
,
J. Math. Phys.
43
,
56
(
2002
).
25.
R. Blattner, in Non-linear Partial Differential Operators and Quantization Procedure, Proceedings, Clausthall 1981 (Springer, New York, 1983), pp. 209–241.
26.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
,
J. Math. Phys.
43
,
2882
(
2002
).
27.
G.
Sardanashvily
,
J. Math. Phys.
41
,
5245
(
2000
).
28.
B.
Iliev
,
J. Phys. A
34
,
4887
(
2001
).
29.
G.
Sardanashvily
, E-print arXiv: quant-ph/0201050.
This content is only available via PDF.
You do not currently have access to this content.