We present a twistor description for null two-surfaces (null strings) in four-dimensional Minkowski space–time. The Lagrangian density for a variational principle is taken as a surface-forming null bivector. The proposed formulation is reparametrization invariant and free of any algebraic and differential constraints. The spinor formalism of Cartan–Penrose allows us to derive a nonlinear evolution equation for the world-sheet coordinate xa(τ,σ). An example of null two-surface given by the two-dimensional self-intersection (caustic) of a null hypersurface is studied.

1.
L.
Brink
,
P.
Di Vecchia
, and
P.
Howe
,
Nucl. Phys. B
118
,
76
(
1977
).
2.
L. P. Hughston and W. T. Shaw, in Twistors in Mathematics and Physics, edited by T. N. Bailey and R. J. Baston, London Mathematical Society Lecture Note Series Vol. 156 (Cambridge University Press, Cambridge, 1990), pp. 218–245.
3.
I. A.
Bandos
and
A. A.
Zheltukhin
,
Theor. Math. Phys.
88
,
925
(
1992
).
4.
S.
Kar
,
Phys. Rev. D
53
,
6842
(
1996
).
5.
O. E.
Gusev
and
A. A.
Zheltukhin
,
JETP Lett.
64
,
487
(
1996
).
6.
C. O.
Lousto
and
N.
Sánchez
,
Phys. Rev. D
54
,
6399
(
1996
).
7.
M. P.
Dabrowski
and
A. L.
Larsen
,
Phys. Rev. D
55
,
6409
(
1997
).
8.
S.
Frittelli
,
E. T.
Newman
, and
G.
Silva-Ortigoza
,
J. Math. Phys.
40
,
383
(
1999
).
9.
L.
Brink
,
S.
Deser
,
B.
Zumino
,
P.
Di Vecchia
, and
P.
Howe
,
Phys. Lett. B
64
,
435
(
1976
).
10.
T.
Shirafuji
,
Prog. Theor. Phys.
70
,
18
(
1983
).
11.
D. V.
Volkov
and
A. A.
Zheltukhin
,
Nucl. Phys. B
335
,
723
(
1990
).
12.
V. A.
Soroka
,
D. P.
Sorokin
,
V. I.
Tkach
, and
D. V.
Volkov
,
Int. J. Mod. Phys. A
7
,
5977
(
1992
).
13.
R. Penrose and W. Rindler, Spinors and Space-Time (Cambridge University Press, Cambridge, 1984), Vols. 1–2.
14.
M.
Kossowski
,
Trans. Am. Math. Soc.
316
,
369
(
1989
).
15.
A.
Ashtekar
,
C.
Beetle
,
O.
Dreyer
,
S.
Fairhurst
,
B.
Krishnan
,
J.
Lewandowski
, and
J.
Wiśniewski
,
Phys. Rev. Lett.
85
,
3564
(
2000
).
16.
O.
Dreyer
,
A.
Ghosh
, and
J.
Wiśniewski
, preprint hep-th/0101117,
2001
.
17.
R.
Penrose
,
Class. Quantum Grav.
14
,
A299
(
1997
).
18.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of semi-Riemannian Manifolds and Applications (Kluwer, Dordrecht, 1996).
19.
A. A.
Zheltukhin
,
Class. Quantum Grav.
13
,
2357
(
1996
).
20.
A. A.
Zheltukhin
and
U.
Linström
, preprint hep-th/0103101,
2001
.
21.
A.
Schild
,
Phys. Rev. D
16
,
1722
(
1977
).
22.
A. A.
Zheltukhin
,
Sov. J. Nucl. Phys.
51
,
950
(
1990
).
23.
K. Ilienko, in Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, edited by H.-D. Doebner et al. (World Scientific, Singapore, 1997), Vol. 2, pp. 689–692.
24.
K.
Ilienko
and
A. A.
Zheltukhin
,
Class. Quantum Grav.
16
,
383
(
1999
).
25.
K. Ilyenko, D. Phil. Thesis, University of Oxford, 1999.
26.
J.
Stachel
,
Phys. Rev. D
21
,
2182
(
1980
).
27.
J. A. Schouten, Ricci-Calculus (Springer, Berlin, 1954).
28.
E.
Newman
and
R.
Penrose
,
J. Math. Phys.
3
,
566
(
1962
).
29.
E.
Noether
, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 235 (1918).
30.
B. M.
Barbashov
and
V. V.
Nesterenko
,
Fortschr. Phys.
31
,
535
(
1983
).
31.
B.
Mukhopadhyay
, preprint gr-qc/9910018,
1999
.
32.
E. J. Flaherty, in General Relativity and Gravitation, edited by A. Held (Plenum, New York, 1980), pp. 207–239.
33.
A.
Feber
,
Nucl. Phys. B
132
,
55
(
1978
).
34.
A. K. H.
Bengtsson
,
I.
Bengtsson
,
M.
Cederwall
, and
N.
Linden
,
Phys. Rev. D
36
,
1766
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.