The bound-state energy eigenvalues for the two-dimensional Kepler problem are found to be degenerate. This “accidental” degeneracy is due to the existence of a two-dimensional analog of the quantum-mechanical Runge–Lenz vector. Reformulating the problem in momentum space leads to an integral form of the Schrödinger equation. This equation is solved by projecting the two-dimensional momentum space onto the surface of a three-dimensional sphere. The eigenfunctions are then expanded in terms of spherical harmonics, and this leads to an integral relation in terms of special functions which has not previously been tabulated. The dynamical symmetry of the problem is also considered, and it is shown that the two components of the Runge–Lenz vector in real space correspond to the generators of infinitesimal rotations about the respective coordinate axes in momentum space.

1.
S. Flügge and H. Marschall, Rechenmethoden der Quantentheorie, 2nd ed. (Springer-Verlag, Berlin, 1952), problem 24.
2.
W.
Pauli
,
Z. Phys.
36
,
336
(
1926
).
3.
V. A.
Fock
,
Z. Phys.
98
,
145
(
1935
).
4.
V.
Bargmann
,
Z. Phys.
99
,
576
(
1936
).
5.
S. P.
Alliluev
,
Sov. Phys. JETP
6
,
156
(
1958
).
6.
M.
Bander
and
C.
Itzykson
,
Rev. Mod. Phys.
38
,
330
(
1966
).
7.
M.
Bander
and
C.
Itzykson
,
Rev. Mod. Phys.
38
,
346
(
1966
).
8.
X. L.
Yang
,
M.
Lieber
, and
F. T.
Chan
,
Am. J. Phys.
59
,
231
(
1991
).
9.
X. L.
Yang
,
S. H.
Guo
,
F. T.
Chan
,
K. W.
Wong
, and
W. Y.
Ching
,
Phys. Rev. A
43
,
1186
(
1991
).
10.
V.
Aquilanti
,
S.
Cavalli
, and
C.
Coletti
,
Chem. Phys.
214
,
1
(
1997
).
11.
J.
Daboul
,
P.
Slodowy
, and
C.
Daboul
,
Phys. Lett. B
317
,
321
(
1993
).
12.
C.
Daboul
and
J.
Daboul
,
Phys. Lett. B
425
,
135
(
1998
).
13.
L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) 3rd ed. (Pergamon, Oxford, 1977).
14.
J. Mathews and R. Walker, Mathematical Methods of Physics, 2nd ed. (Benjamin/Cummings, Menlo Park, 1970).
15.
I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, 6th ed. (Academic, San Diego, 2000).
16.
G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, London, 1985).
This content is only available via PDF.
You do not currently have access to this content.