We present a method for the construction of a Krein space completion for spaces of test functions, equipped with an indefinite inner product induced by a kernel which is more singular than a distribution of finite order. This generalizes a regularization method for infrared singularities in quantum field theory, introduced by Morchio and Strocchi, to the case of singularities of infinite order. We give conditions for the possibility of this procedure in terms of local differential operators and the Gelfand–Shilov test function spaces, as well as an abstract sufficient condition. As a model case we construct a maximally positive definite state space for the Heisenberg algebra in the presence of an infinite infrared singularity.

1.
G.
Morchio
,
D.
Pierotti
, and
F.
Strocchi
, “
Infrared and vacuum structure in two-dimensional local quantum field theory
,”
J. Math. Phys.
31
,
1467
1477
(
1990
).
2.
F. Strocchi, Selected Topics on the General Properties of Quantum Field Theory, Lecture Notes in Physics Vol. 51 (World Scientific, Singapore, 1993).
3.
R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (Benjamin, London, 1964).
4.
A. U.
Schmidt
, “
Mathematical problems of gauge quantum field theory: A survey of the Schwinger model
,”
Universitatis Iagellonicae Acta Mathematica Fasciculus
XXXIV
,
113
134
(
1997
),
A. U.
Schmidt
, hep-th/9707166.
5.
A. S.
Wightman
, “
The choice of test functions in quantum field theory
,”
J. Math. Anal. Appl.
7B
,
769
791
(
1981
).
6.
U.
Moschella
and
F.
Strocchi
, “
The choice of test functions in gauge quantum field theory
,”
Lett. Math. Phys.
24
,
103
113
(
1992
).
7.
E.
Brüning
and
S.
Nagamachi
, “
Hyperfunction quantum field theory: Basic structural results
,”
J. Math. Phys.
30
,
2340
2359
(
1989
).
8.
E.
Brüning
and
S.
Nagamachi
, “
Closure of field operators, asymptotic Abelianess, and vacuum structure in hyperfunction quantum field theory
,”
J. Math. Phys.
39
,
5098
5111
(
1998
).
9.
I. M. Gelfand and G. E. Shilov, Generalized Functions (Academic, London, 1964), Vol. 2.
10.
J. Bognár, Indefinite Inner Product Spaces (Springer, Berlin, 1974).
11.
M.
Mnatsakanova
,
G.
Morchio
,
F.
Strocchi
, and
Yu.
Vernov
, “
Irreducible representations of the Heisenberg algebra in Krein spaces
,”
J. Math. Phys.
39
,
2969
2982
(
1998
), mp_arc/95-534.
12.
C. R. Putnam, Commutation Properties of Hilbert Space Operators (Springer, New York, 1967).
13.
G. Morchio and F. Strocchi, Representations of *-Algebras in Indefinite Inner Product Spaces, Stochastic Processes, Physics and Geometry: New Interplays, II (Leipzig 1999), AMS Conference Proceedings Vol. 29 (American Mathematical Society, Providence, RI, 2000), pp. 491–503.
14.
J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View, 2nd ed. (Springer, Berlin, 1987).
15.
T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric (Wiley, New York, 1989).
This content is only available via PDF.
You do not currently have access to this content.