The asymptotics (in the width of windows) of eigenvalues and bands for two-dimensional waveguides and three-dimensional layers coupled through small windows is obtained. The technique is matching of asymptotic expansions of the solutions of boundary value problems.

1.
C. W. J. Beenakker and H. van Houten, “Quantum transport in semiconductor nanostructures,” Solid State Physics. Advances in Research and Applications, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1991), Vol. 44, pp. 1–228.
2.
W.
Bulla
,
F.
Gesztesy
,
W.
Renger
, and
B.
Simon
, “
Weakly coupled bound states in quantum waveguides
,”
Proc. Am. Math. Soc.
125
,
1487
1495
(
1997
).
3.
Y.
Takagaki
and
K.
Ploog
, “
Ballistic electron transmission in coupled parallel waveguides
,”
Phys. Rev. B
49
,
1782
1788
(
1994
).
4.
P.
Duclos
and
P.
Exner
, “
Curvature-induced bound states in quantum waveguides in two and three dimensions
,”
Rev. Math. Phys.
7
,
73
102
(
1995
).
5.
I. Yu.
Popov
and
S. L.
Popova
, “
Zero-width slit model and resonances in mesoscopic systems
,”
Europhys. Lett.
24
,
373
377
(
1993
).
6.
P.
Exner
and
S.
Vugalter
, “
Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window
,”
Ann. I.H.P. Phys. Theor.
65
,
109
123
(
1996
).
7.
Ch.
Kunze
, “
Leaky and mutually coupled quantum wires
,”
Phys. Rev. B
48
,
14338
14346
(
1993
).
8.
P.
Exner
and
S.
Vugalter
, “
Bound state asymptotic estimates for window-coupled Dirichlet strips and layers
,”
J. Phys. A
30
,
7863
7878
(
1997
).
9.
I. Yu.
Popov
, “
Waveguides coupled through aperture: Asymptotics of eigenvalue
,”
Pis'ma Zh. Tekh. Fiz.
25
,
57
59
(
1999
).
10.
I. Yu.
Popov
, “
Asymptotics of bound states for laterally coupled waveguides
,”
Rep. Math. Phys.
43
,
427
437
(
1999
).
11.
S. V.
Frolov
and
I. Yu.
Popov
, “
Resonances for laterally coupled quantum waveguides
,”
J. Math. Phys.
41
,
4391
4405
(
2000
).
12.
I. Yu.
Popov
, “
Asymptotics of resonances and bound states for laterally coupled curved quantum waveguides
,”
Phys. Lett. A
264
,
148
153
(
2000
).
13.
A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989).
14.
R. R.
Gadil’shin
, “
Surface potentials and method of matching of asymptotic expansions in the problem of Helmholtz resonator
,”
Algebra i Analiz (Leningrad Math. J.)
4
,
88
115
(
1992
).
15.
B.
Simon
, “
The bound state of weakly coupled Schrödinger operators in one and two dimensions
,”
Ann. Phys. (N.Y.)
97
,
279
288
(
1976
).
16.
H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry (Springer, Berlin, 1987).
17.
V. A.
Geyler
and
M. M.
Senatorov
, “
Structure of the spectrum of the Schrödinger operator with magnetic field in a strip and infinite-gap potentials
,”
Mat. Sb.
188
,
21
32
(
1997
).
18.
N. S. Landkof, Foundation of Modern Potential Theory (Springer, Berlin, 1972).
19.
I. Yu.
Popov
, “
On the point and continuous spectra for coupled quantum waveguides and resonators
,”
Rep. Math. Phys.
40
,
521
529
(
1997
).
20.
V. M. Babich et al., Linear Equations of Mathematical Physics (Nauka, Moscow, 1964).
21.
G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, 1951).
22.
G. I. Eskin, Boundary Problems for Elliptic Pseudodifferential Equations (Nauka, Moscow, 1973).
23.
M.
Schiffer
and
G.
Szego
, “
Virtual mass and polarization
,”
Trans. Am. Math. Soc.
67
,
130
205
(
1949
).
24.
A. P. Prudnikov, Yu. A. Brychkov, and O. M. Marichev, Integrals and Series. Special Functions (Nauka, Moscow, 1983).
25.
S. Albeverio, F. Gestezy, R. Hoegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics (Springer, Berlin, 1988).
This content is only available via PDF.
You do not currently have access to this content.