We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the -symmetric non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-Hermitian Hamiltonians, and argue that the basic structure responsible for the particular spectral properties of these Hamiltonians is their pseudo-Hermiticity. We explore the basic properties of general pseudo-Hermitian Hamiltonians, develop pseudosupersymmetric quantum mechanics, and study some concrete examples, namely the Hamiltonian of the two-component Wheeler–DeWitt equation for the FRW-models coupled to a real massive scalar field and a class of pseudo-Hermitian Hamiltonians with a real spectrum.
REFERENCES
1.
2.
F. M.
Fernández
, R.
Guardiola
, J.
Ros
, and M.
Znojil
, J. Phys. A
31
, 10105
(1998
).3.
4.
C. M.
Bender
, S.
Boettcher
, and P. N.
Meisenger
, J. Math. Phys.
40
, 2201
(1999
).5.
C. M.
Bender
, G. V.
Dunne
, and P. N.
Meisenger
, Phys. Lett. A
252
, 272
(1999
).6.
7.
A. A.
Andrianov
, M. V.
Ioffe
, F.
Cannata
, and J.-P.
Dedonder
, Int. J. Mod. Phys. A
14
, 2675
(1999
).8.
C. M.
Bender
, S.
Boettcher
, and V. M.
Savage
, J. Math. Phys.
41
, 6381
(2000
).9.
10.
11.
12.
13.
14.
M.
Znojil
, F.
Cannata
, B.
Bagchi
, and R.
Roychoudhury
, Phys. Lett. B
483
, 284
(2000
).15.
16.
C. M.
Bender
, G. V.
Dunne
, P. N.
Meisenger
, and M.
Şimşek
, Phys. Lett. A
281
, 311
(2001
).17.
F.
Cannata
, M.
Ioffe
, R.
Roychoudhury
, and P.
Roy
, Phys. Lett. A
281
, 305
(2001
).18.
C. M.
Bender
, M.
Berry
, P. N.
Meisenger
, V. M.
Savage
, and M.
Şimşek
, J. Phys. A
34
, L31
(2001
).19.
20.
M.
Znojil
, LANL Archives: hep-th/0101038.21.
M.
Znojil
, LANL Archives: math-ph/0104012.22.
G. S.
Japaridze
, LANL Archives: quant-ph/0104077.23.
24.
25.
N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).
26.
27.
D. N. Page, in Gravitation: A Banff Summer Institute, edited by R. Mann and P. Wesson (World Scientific, Singapore, 1991).
28.
G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, Berlin, 1996).
29.
K.
Aghababaei Samani
and A.
Mostafazadeh
, Nucl. Phys. B
595
, 467
(2001
).
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.