We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the PT-symmetric non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-Hermitian Hamiltonians, and argue that the basic structure responsible for the particular spectral properties of these Hamiltonians is their pseudo-Hermiticity. We explore the basic properties of general pseudo-Hermitian Hamiltonians, develop pseudosupersymmetric quantum mechanics, and study some concrete examples, namely the Hamiltonian of the two-component Wheeler–DeWitt equation for the FRW-models coupled to a real massive scalar field and a class of pseudo-Hermitian Hamiltonians with a real spectrum.

1.
C. M.
Bender
and
S.
Boettcher
,
Phys. Rev. Lett.
80
,
5243
(
1998
).
2.
F. M.
Fernández
,
R.
Guardiola
,
J.
Ros
, and
M.
Znojil
,
J. Phys. A
31
,
10105
(
1998
).
3.
F.
Cannata
,
G.
Junker
, and
J.
Trost
,
Phys. Lett. A
246
,
219
(
1998
).
4.
C. M.
Bender
,
S.
Boettcher
, and
P. N.
Meisenger
,
J. Math. Phys.
40
,
2201
(
1999
).
5.
C. M.
Bender
,
G. V.
Dunne
, and
P. N.
Meisenger
,
Phys. Lett. A
252
,
272
(
1999
).
6.
C. M.
Bender
and
G. V.
Dunne
,
J. Math. Phys.
40
,
4616
(
1999
).
7.
A. A.
Andrianov
,
M. V.
Ioffe
,
F.
Cannata
, and
J.-P.
Dedonder
,
Int. J. Mod. Phys. A
14
,
2675
(
1999
).
8.
C. M.
Bender
,
S.
Boettcher
, and
V. M.
Savage
,
J. Math. Phys.
41
,
6381
(
2000
).
9.
G. A.
Mezincescu
,
J. Phys. A
33
,
4911
(
2000
).
10.
E.
Delabaere
and
D. T.
Trinh
,
J. Phys. A
33
,
8771
(
2000
).
11.
B.
Bagchi
and
R.
Roychoudhury
,
J. Phys. A
33
,
L1
(
2000
).
12.
A.
Khare
and
B. P.
Mandal
,
Phys. Lett. A
272
,
53
(
2000
).
13.
B.
Bagchi
,
F.
Cannata
, and
C.
Quesne
,
Phys. Lett. A
269
,
79
(
2000
).
14.
M.
Znojil
,
F.
Cannata
,
B.
Bagchi
, and
R.
Roychoudhury
,
Phys. Lett. B
483
,
284
(
2000
).
15.
M.
Znojil
and
M.
Tater
,
J. Phys. A
34
,
1793
(
2001
).
16.
C. M.
Bender
,
G. V.
Dunne
,
P. N.
Meisenger
, and
M.
Şimşek
,
Phys. Lett. A
281
,
311
(
2001
).
17.
F.
Cannata
,
M.
Ioffe
,
R.
Roychoudhury
, and
P.
Roy
,
Phys. Lett. A
281
,
305
(
2001
).
18.
C. M.
Bender
,
M.
Berry
,
P. N.
Meisenger
,
V. M.
Savage
, and
M.
Şimşek
,
J. Phys. A
34
,
L31
(
2001
).
19.
P.
Dorey
,
C.
Dunning
, and
R.
Tateo
, LANL Archives: hep-th/0104119.
20.
M.
Znojil
, LANL Archives: hep-th/0101038.
21.
M.
Znojil
, LANL Archives: math-ph/0104012.
22.
G. S.
Japaridze
, LANL Archives: quant-ph/0104077.
23.
R.
Kretschmer
and
L.
Szymanowski
, LANL Archives: quant-ph/0105054.
24.
A.
Mostafazadeh
,
J. Math. Phys.
39
,
4499
(
1998
).
25.
N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).
26.
J.
Wong
,
J. Math. Phys.
8
,
2039
(
1967
);
F. H. M.
Faisal
and
J. V.
Moloney
,
J. Phys. B
14
,
3603
(
1981
).
27.
D. N. Page, in Gravitation: A Banff Summer Institute, edited by R. Mann and P. Wesson (World Scientific, Singapore, 1991).
28.
E.
Witten
,
Nucl. Phys. B
202
,
253
(
1982
);
L. E.
Gendenshtein
and
I. V.
Krive
,
Sov. Phys. Usp.
28
,
645
(
1985
);
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
,
Phys. Rep.
251
,
267
(
1995
);
G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, Berlin, 1996).
29.
K.
Aghababaei Samani
and
A.
Mostafazadeh
,
Nucl. Phys. B
595
,
467
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.