In this article we study the construction of supersymmetric spin networks, which has a direct interpretation in context of the representation theory of the superalgebra. In particular we analyze a special kind of spin network associated with superalgebra Osp(1|2n). It turns out that the set of corresponding spin network states forms an orthogonal basis of the Hilbert space L2(A/G), and this argument holds even in the q-deformed case. The Osp(n|2) spin networks are also discussed briefly. We expect they could provide useful techniques to quantum supergravity and gauge field theories from the point of nonperturbative view.

1.
R. Penrose, in Quantum Theory and Beyond, edited by T. Bastin (Cambridge University Press, Cambridge, 1971).
2.
J.
Kogut
and
L.
Susskind
,
Phys. Rev. D
11
,
395
(
1975
);
W.
Furmanski
and
A.
Kowala
,
Nucl. Phys. B
291
,
594
(
1987
);
J.
Baez
,
Adv. Math.
117
,
253
(
1996
).
3.
E.
Witten
,
Chem. Phys.
121
,
351
(
1989
);
V.
Turaev
and
O.
Viro
,
Topology
31
,
865
(
1992
);
H.
Ooguri
,
Mod. Phys. Lett. A
7
,
2799
(
1992
);
L. Crane and D. Yetter, in Quantum Topology, edited by L. H. Kauffman and R. A. Baadhio, (World Scientific Singapore, 1993) 120;
L.
Crane
and
I. B.
Frenkel
,
J. Math. Phys.
35
,
5136
(
1994
);
L. Crane and D. Yetter, On Algebra Structure Implicit in Topological Quantum Field Theories, Kansas preprint 1994;
T. J.
Foxon
,
Class. Quantum Grav.
12
,
951
(
1995
);
C.
Rovelli
,
Phys. Rev. D
48
,
2702
(
1993
);
S.
Mizoguchi
and
T.
Tada
,
Phys. Rev. Lett.
68
,
1795
(
1992
).
4.
C.
Rovelli
and
L.
Smolin
,
Phys. Rev. D
52
,
5743
(
1995
);
J. Baez, “Spin networks in nonperturbative quantum gravity,” in The Interface of Knots and Physics, edited by L. Kauffman, (AMS, Providence, 1996), p. 167;
A.
Ashtekar
,
J.
Lewandowski
,
D.
Marolf
,
J.
Mourao
, and
T.
Thiemann
,
J. Math. Phys.
36
,
6456
(
1995
).
5.
A
Ashtekar
,
J.
Lewandowski
,
D.
Marlof
,
J.
Mourãu
, and
T.
Thiemann
, gr-qc/9504018;
A
Ashtekar
,
J.
Lewandowski
,
D.
Marlof
,
J.
Mourãu
, and
T.
Thiemann
,
J. Math. Phys.
36
,
6456
(
1995
);
A.
Ashtekar
and
J.
Lewandowski
,
Class. Quantum Grav.
14
,
A55
(
1997
);
A.
Ashtekar
and
J.
Lewandowski
, gr-qc/9602046;
J.
Lewandowski
,
Class. Quantum Grav.
14
,
71
(
1997
);
J.
Lewandowski
, gr-qc/9602035;
T.
Thiemann
,
Class. Quantum Grav.
15
,
839
(
1998
);
T.
Thiemann
,
Class. Quantum Grav.
15
,
875
(
1995
);
T.
Thiemann
,
Class. Quantum Grav.
15
,
1207
(
1998
);
T.
Thiemann
,
Class. Quantum Grav.
15
,
1249
(
1998
);
T.
Thiemann
,
Class. Quantum Grav.
15
,
1218
(
1998
);
T.
Thiemann
,
Class. Quantum Grav.
15
,
1463
(
1998
);
T.
Thiemann
,
Class. Quantum Grav.
15
,
1487
(
1998
);
T.
Thiemann
, gr-qc/9606092;
T.
Thiemann
, gr-qc/9606089;
T.
Thiemann
, gr-qc/9606090;
T.
Thiemann
, gr-qc/9705020;
T.
Thiemann
, gr-qc/9705021;
T.
Thiemann
, gr-qc/9705019;
T.
Thiemann
, gr-qc/9705018;
T.
Thiemann
, gr-qc/9705017.
6.
C.
Rovelli
and
L.
Smolin
,
Nucl. Phys. B
442
,
593
(
1995
);
C.
Rovelli
and
L.
Smolin
,
Nucl. Phys. B
erratum
456
,
734
(
1995
).
7.
F.
Markopoulou
, “
Dual formulation of spin network evolution
” preprint, March 1997, gr-qc/9704013;
F.
Markopoulou
and
L.
Smolin
,
Nucl. Phys. B
508
,
409
(
1997
);
F.
Markopoulou
and
L.
Smolin
, gr-qc/9702025;
F.
Markopoulou
and
L.
Smolin
,
Phys. Rev. D
58
,
084032
(
1998
);
F.
Markopoulou
and
L.
Smolin
, gr-qc/9712067.
8.
M.
Reisenberger
, “
A lattice worldsheet sum for 4-d Euclidean general relativity
,” gr-qc/9711052;
M.
Reisenberger
and
C.
Rovelli
,
Phys. Rev. D
56
,
3490
(
1997
);
M.
Reisenberger
and
C.
Rovelli
, gr-qc/9612035;
J.
Baez
,
Class. Quantum Grav.
15
,
1827
(
1998
);
J.
Baez
, gr-qc/9709052;
J.
Baez
,
Lect. Notes Phys.
543
,
25
(
2000
);
J.
Baez
, gr-qc/9905087.
9.
We also notice that spin networks with other Lie groups have also been discussed in some places,
such as
J.
Barrett
and
L.
Crane
,
J. Math. Phys.
39
,
3296
(
1998
);
J.
Barrett
and
L.
Crane
, gr-qc/9709028;
J.
Barrett
and
L.
Crane
,
Class. Quantum Grav.
17
,
3101
(
3101
);
J.
Barrett
and
L.
Crane
, gr-qc/9904025;
S.
Davids
,
J. Math. Phys.
41
,
924
(
2000
);
S.
Davids
, gr-qc/9807061;
M.
Bojowald
,
J. Math. Phys.
41
,
4313
(
2000
);
M.
Bojowald
, hep-th/9908170.
10.
Y.
Ling
and
L.
Smolin
,
Phys. Rev. D
61
,
044008
(
2000
);
Y.
Ling
and
L.
Smolin
, hep-th/9904016.
11.
Y. Ling and L. Smolin, “N=2 quantum supergravity,” preprint in preparation.
12.
L. Kauffman and S. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (Princeton University Press, Princeton, NJ, 1994).
13.
V.
Kac
,
Adv. Math.
26
,
8
(
1977
);
V.
Kac
,
Chem. Phys.
53
,
33
(
1977
);
Lecture Notes in Mathematics Vol. 676, (Springer, New York, 1978).
14.
L.
Frappat
,
A.
Sciarrino
and
P.
Sorba
, “
Dictionary on Lie Superalgebras
,” hep-th/9607161.
15.
The classification of superalgebra was established in Ref. 13. There are three kinds of orthosympletic algebras Osp(M|2n):B(m,n)=Osp(2m+1|2n);C(n)=Osp(2|2n–2),(n⩾2) and D(m,n)=Osp(2m|2n),(m,n⩾2).
16.
A.
Balantekin
and
I.
Bars
,
J. Math. Phys.
22
,
1149
(
1981
);
A.
Balantekin
and
I.
Bars
,
J. Math. Phys.
22
,
1810
(
1981
).
17.
Strictly speaking, unlike the superalgebra SU(N|M), the symmetrized basis ξ(αβ) need to shift a little bit by the condition Gαβξ(αβ)=0 (Ref. 16), where Gαβ is the invariant bilinear form taking the form
(10000In0−In0).
However, this shift will not affect our construction of the unit element of the supergroups. We just ignore this shift in this article.
18.
G.
Hochschild
III
,
J. Math.
20
,
107
(
1976
);
D.
Djoković
and
G.
Hochschild
III
,
J. Math.
20
,
134
(
1976
);
D.
Djoković
,
J. Fluids Eng.
7
,
217
(
1976
).
19.
B.
More
,
A.
Sciarrino
, and
P.
Sorba
,
J. Phys. A
18
,
1597
(
1985
);
G.
Girardi
,
A.
Sciarrino
, and
P.
Sorba
,
J. Phys. A
16
,
2609
(
1983
).
20.
V.
Rittenberg
and
M.
Scheunert
,
Commun. Math. Phys.
83
,
19
(
1982
).
21.
L.
Urrutia
, “Towards a loop representation of connection theories defined over a super Lie algebra,” aipproc style based on the lectures given at the Fifth Workshop on Particles and Fields, Puebla, November 1995;
L.
Urrutia
, hep-th/9609001.
22.
D.
Williams
and
J. F.
Cornwell
,
J. Math. Phys.
25
,
2922
(
1984
).
23.
This is also true for all the semisimple Lie supergroups (Ref. 22), however maybe it does not hold for other supergroups.
24.
H. C.
Lee
and
R. B.
Zhang
, “
Geometry and representations of the quantum supergroup Ospq(1|2n),
math.QA/9804111;
M.
Scheunert
and
R. B.
Zhang
, “
Invariant integration on classical and quantum Lie supergroups
,” math.RA/9911200.
25.
L.
Castellani
,
P.
Fre
, and
P.
van Nieuwenhuizen
,
Ann. Phys.
136
,
398
(
1981
).
26.
R.
D’Auria
and
P.
Fre
,
Nucl. Phys. B
201
,
101
(
1982
);
R.
D’Auria
and
P.
Fre
,
Nucl. Phys. B
Erratum
206
,
496
(
1982
).
27.
Y.
Ling
and
L.
Smolin
,
Nucl. Phys. B
601
,
191
(
2001
);
Y.
Ling
and
L.
Smolin
, hep-th/0003285.
28.
P. K.
Townsend
, “
M theory from its superalgebras
,” Cargese lectures 1997, hep-th/9712004;
M.
Gunaydin
,
Nucl. Phys. B
528
,
432
(
1998
);
M.
Gunaydin
, hep-th/9803138.
29.
E.
Bergshoeff
and
A.
Proeyen
,
Class. Quantum Grav.
17
,
3277
(
2000
);
E.
Bergshoeff
and
A.
Proeyen
, hep-th/0003261.
30.
T.
Jacobson
,
Class. Quantum Grav.
5
,
923
(
1988
);
D.
Armand-Ugon
,
R.
Gambini
,
O.
Obregon
, and
J.
Pullin
, hep-th/9508036;
D.
Armand-Ugon
,
R.
Gambini
,
O.
Obregon
, and
J.
Pullin
,
Nucl. Phys. B
460
,
615
(
1996
);
T.
Sano
and
J.
Shiraishi
,
Nucl. Phys. B
410
,
423
(
1993
);
T.
Sano
and
J.
Shiraishi
, hep-th/9211104;
T.
Sano
and
J.
Shiraishi
, hep-th/9211103;
K.
Ezawa
,
Prog. Theor. Phys.
95
,
863
(
1996
);
K.
Ezawa
, hep-th/9511047;
T.
Kadoyoshi
and
S.
Nojiri
,
Mod. Phys. Lett. A
12
,
1165
(
1997
);
T.
Kadoyoshi
and
S.
Nojiri
, hep-th/9703149.
31.
Y. Ling and L. Smolin, “Holography, BPS states and N=2 quantum supergravity,” preprint in preparation.
32.
M.
Scheunert
,
W.
Nahm
, and
V.
Rittenberg
,
J. Math. Phys.
18
,
146
(
1977
);
M.
Scheunert
,
W.
Nahm
, and
V.
Rittenberg
,
J. Math. Phys.
18
,
155
(
1977
).
33.
L.
Smolin
,
J. Math. Phys.
36
,
6417
(
1995
).
34.
L.
Smolin
,
Phys. Rev. D
61
,
084007
(
2000
);
L.
Smolin
, hep-th/9808191.
35.
Y.
Ling
and
L.
Smolin
,
Phys. Rev. D
63
,
064010
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.