An exact finite expression for the exponentiation of the (spin 12) spinor representation of the Lorentz group is obtained. From this expression an exact finite expression for the exponentiation of the vector representation of the Lorentz group is derived. The two expressions are compared with the literature in the special cases of either spatial rotations or boosts, only.

1.
V. S. Varadajan, Lie Groups, Lie Algebras, and Their Representations (Prentice–Hall, Englewood Cliffs, NJ, 1974).
2.
J.
Froelich
and
N.
Salingaros
,
J. Math. Phys.
25
,
2347
(
1984
).
3.
M. A.
Lohe
,
J. Math. Phys.
14
,
1959
(
1973
).
4.
J. R.
Zeni
and
W. A. Rodrigues
Jr.
,
Hadronic J.
13
,
317
(
1990
).
5.
A.
Barut
,
J.
Zeni
, and
A.
Laufer
,
J. Phys. A
27
,
5239
(
1994
).
6.
A. I. Shimabukuro and M. A. F. Rosa, in SILARG VIII, Proceedings of the 8th Latin American Symposium on Relativity and Gravitation. Gravitation: The Spacetime Structure, edited by P. S. Letelier and W. A. Rodrigues, Jr. (World Scientific, Singapore, 1994), p. 272.
7.
F. S.
Leite
and
P.
Crouch
,
J. Math. Phys.
40
,
3561
(
1999
).
8.
E. J.
Putzer
,
Am. Math. Monthly
73
,
2
(
1966
).
9.
J. R.
Zeni
and
W. A.
Rodrigues
Jr.
,
Int. J. Mod. Phys. A
7
,
1793
(
1992
).
10.
E. M. Corson, Introduction to Tensors, Spinors, and Relativistic Wave-Equations (Blackie, London, 1953).
11.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973), Chap. 41.
12.
J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1985).
13.
J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
This content is only available via PDF.
You do not currently have access to this content.