There are only three stable singularities of a differentiable map between three-dimensional manifolds, namely folds, cusps and swallowtails. A Skyrme configuration is a map from space to SU2, and its singularities correspond to the points where the baryon density vanishes. In this article we consider the singularity structure of Skyrme configurations. The Skyrme model can only be solved numerically. However, there are good analytic ansätze. The simplest of these, the rational map ansatz, has a nongeneric singularity structure. This leads us to introduce a nonholomorphic ansatz as a generalization. For baryon numbers 2, 3, and 4, the approximate solutions derived from this ansatz are closer in energy to the true solutions than any other ansatz solution. We find that there is a tiny amount of negative baryon density for baryon number 3, but none for 2 or 4. We comment briefly on the relationship to Bogomolny–Prasad–Sommerfield monopoles.

1.
T. H. R.
Skyrme
,
Proc. R. Soc. London, Ser. A
260
,
127
(
1961
).
2.
P. M.
Sutcliffe
,
Phys. Lett. B
292
,
104
(
1992
).
3.
V. B.
Kopeliovich
and
B. E.
Stern
,
JETP Lett.
45
,
203
(
1987
).
4.
J. J. M.
Verbaarschot
,
Phys. Lett. B
195
,
235
(
1987
).
5.
E.
Braaten
,
S.
Townsend
, and
L.
Carson
,
Phys. Lett. B
235
,
147
(
1990
).
6.
R. A.
Battye
and
P. M.
Sutcliffe
,
Phys. Rev. Lett.
79
,
363
(
1997
).
7.
R. A.
Battye
and
P. M.
Sutcliffe
,
Phys. Rev. Lett.
86
,
3989
(
2001
).
8.
S.
Krusch
,
Nonlinearity
13
,
2163
(
2000
).
9.
C. J.
Houghton
,
N. S.
Manton
, and
P. M.
Sutcliffe
,
Nucl. Phys. B
510
,
507
(
1998
).
10.
N. S.
Manton
,
Commun. Math. Phys.
111
,
469
(
1987
).
11.
W. K.
Baskerville
and
R.
Michaels
,
Phys. Lett. B
448
,
275
(
1999
).
12.
M. Kugler, “Holes in the charge density of topological solitons,” in Kingston 1997, Solitons (Springer-Verlag, Berlin, 1999), pp. 93–97.
13.
C. L.
Schat
and
N. N.
Scoccola
,
Phys. Rev. D
61
,
034008
(
2000
).
14.
J.
Hurtubise
,
Commun. Math. Phys.
100
,
191
(
1985
).
15.
S.
Jarvis
,
J. Reine Angew. Math.
524
,
17
(
2000
).
16.
C. J.
Houghton
and
P. M.
Sutcliffe
,
Commun. Math. Phys.
180
,
343
(
1996
).
17.
P. M.
Sutcliffe
,
Phys. Lett. B
376
,
103
(
1996
).
18.
R. A.
Leese
and
N. S.
Manton
,
Nucl. Phys. A
572
,
575
(
1994
).
19.
M. F.
Atiyah
and
N. S.
Manton
,
Phys. Lett. B
222
,
438
(
1989
).
20.
V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, Boston, 1985), Vol. I.
21.
B.
Piette
,
P. M.
Sutcliffe
, and
W. J.
Zakrzewski
,
Int. J. Mod. Phys. C
3
,
637
(
1992
).
22.
B. M. A. G.
Piette
,
B. J.
Schroers
, and
W. J.
Zakrzewski
,
Nucl. Phys. B
439
,
205
(
1995
).
23.
N. N.
Scoccola
and
D. R.
Bes
,
J. High Energy Phys.
9
,
012
(
1998
).
24.
M.
de Innocentis
and
R. S.
Ward
,
Nonlinearity
14
,
663
(
2001
).
25.
G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-two Point Groups (MIT, Cambridge, MA, 1963).
26.
J.-P. Serre, Linear Representations of Finite Groups (Springer-Verlag, New York, 1993).
27.
S. Krusch, “Structure of Skyrmions,” Ph.D. thesis, University of Cambridge, 2001.
28.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling Numerical Recipes (Cambridge U.P., Cambridge, 1992).
29.
C. J.
Houghton
and
P. M.
Sutcliffe
,
Nucl. Phys. B
464
,
59
(
1996
).
30.
N. J.
Hitchin
,
N. S.
Manton
, and
M. K.
Murray
,
Nonlinearity
8
,
661
(
1995
).
31.
C. J.
Houghton
and
P. M.
Sutcliffe
,
Nonlinearity
9
,
385
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.