We have obtained asymptotic expansions of the electric dipole (E1)differential excitation function for large values of the adiabaticity parameter ξ and for all values of the eccentricity (ε) of the projectile orbit. To accomplish this, we have developed a new asymptotic power series of exponential integrals related to the Airy integrals, introduced originally in a paper by Brussaard et al. [Ann. Phys. (N.Y.) 7, 47 (1962)], in which asymptotic expansions of the total excitation function were derived.

1.
K.
Alder
,
A.
Bohr
,
T.
Huus
,
B.
Mottelson
, and
A.
Winther
,
Rev. Mod. Phys.
28
,
432
(
1956
).
2.
L. C. Biedenharn and P. J. Brussaard, Coulomb Excitation (Clarendon, Oxford, 1965).
3.
K. A.
Ter-Martirosyan
,
Zh. Eksp. Teor. Fiz.
22
,
284
(
1952
), translated by J. W. Butler, Naval Research Laboratory, Washington, D. C.
4.
K.
Alder
and
A.
Winther
,
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
31
,
1
(
1956
).
5.
G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge University Press, Cambridge, 1944).
6.
P. J.
Brussaard
,
T. A.
Griffy
, and
L. C.
Biedeharn
,
Ann. Phys. (N.Y.)
7
,
47
(
1962
).
7.
M. B. Monagan, K. O. Geddes, K. Heal, G. Labahn, S. Vorketter, and J. McCarron, The Maple Programming Guide (Springer-Verlag, Berlin, 2000).
8.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw–Hill, New York, 1953), Sec. 4.6.
9.
Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972).
10.
J. D. Murray, Asymptotic Expansions (Clarendon, Oxford, 1974).
11.
M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaumm’s Outline Series (McGraw–Hill, New York, 1992).
12.
I. M. Ryzhik and I. S. Gradstein, Tables of Series, Products, and Integrals (VEB Deutscher Verlag der Wissenschaften, Berlin, 1963).
This content is only available via PDF.
You do not currently have access to this content.