The quantization of the reduced first-order dynamics of the nonrelativistic model for Chern–Simons vortices introduced by Manton is studied on a sphere of given radius. We perform geometric quantization on the moduli space of static solutions, using a Kähler polarization, to construct the quantum Hilbert space. Its dimension is related to the volume of the moduli space in the usual classical limit. The angular momenta associated with the rotational SO(3) symmetry of the model are determined for both the classical and the quantum systems. The results obtained are consistent with the interpretation of the solitons in the model as interacting bosonic particles.
REFERENCES
1.
G. Dunne, Self-dual Chern-Simons Theories (Springer-Verlag, Berlin, 1995).
2.
N. S.
Manton
, hep-th/9701027.3.
A. Jaffe and C. Taubes, Vortices and Monopoles (Birkhäuser, Basel, 1980).
4.
J. Śniatycki, Geometric Quantization and Quantum Mechanics (Springer-Verlag, Berlin, 1980).
5.
N. Woodhouse, Geometric Quantization, 2nd ed. (Oxford University Press, Oxford, 1992).
6.
7.
8.
9.
10.
E. B.
Bogomol’nyı̆
, Sov. J. Nucl. Phys.
24
, 449
(1976
).11.
12.
O. Garcı́a-Prada, in Seminari di Geometria. 1994-1995, edited by S. Coen (Univ. Stud. Bologna, 1996), pp. 141–152.
13.
14.
15.
16.
17.
18.
19.
20.
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, Cambridge, 1984).
21.
22.
23.
P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978).
24.
R. Hartshorne, Algebraic Geometry (Springer-Verlag, Berlin, 1977).
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.