We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting.

1.
T.
Banks
,
W.
Fischler
,
S. H.
Shenker
, and
L.
Susskind
, “
M theory as a matrix model: A conjecture
,”
Phys. Rev. D
55
,
5112
(
1997
).
2.
J.
Maldacena
, “
The large N limit of superconformal field theories and supergravity
,”
Adv. Theor. Math. Phys.
2
,
231
(
1998
).
3.
N.
Seiberg
,
L.
Susskind
, and
N.
Toumbas
, “
Strings in background electric field, space/time noncommutativity and a new noncritical string theory
,”
J. High Energy Phys.
6
,
21
(
2000
).
4.
R.
Gopakumar
,
J.
Maldacena
,
S.
Minwalla
, and
A.
Strominger
, “
S duality and non-commutative gauge theory
,”
J. High Energy Phys.
6
,
36
(
2000
).
5.
J.
Gomis
and
T.
Mehen
, “
Spacetime noncommutative field theories and unitarity
,” hep-th/0005129.
6.
N.
Seiberg
,
L.
Susskind
, and
N.
Toumbas
, “
Spacetime noncommutativity and causality
,”
J. High Energy Phys.
6
,
44
(
2000
).
7.
O.
Aharony
,
J.
Gomis
, and
T.
Mehen
, “
On theories with light-like noncommutativity
,” hep-th/0006236.
8.
R.
Gopakumar
,
S.
Minwalla
,
N.
Seiberg
, and
A.
Strominger
, “
OM theory in diverse dimensions
,”
J. High Energy Phys.
8
,
8
(
2000
).
9.
E.
Bergshoeff
,
D. S.
Berman
,
J. P.
van der Schaar
, and
P.
Sundell
, “
Critical fields on the M5-brane and noncommutative open strings
,” hep-th/0006112.
10.
T.
Harmark
, “
Open branes in space–time non-commutative little string theory
,” hep-th/0007147.
11.
I. R.
Klebanov
and
J.
Maldacena
, “
(1+1)-dimensional NCOS and its U(N) gauge theory dual
,” hep-th/0006085.
12.
J.
Maldacena
,
H.
Ooguri
, and
J.
Son
, “
Strings in AdS3 and the SL(2,R) WZW model. II: Euclidean black hole
,”
J. Math. Phys.
42
,
2961
(
2001
).
13.
M.
Kato
and
K.
Ogawa
, “
Covariant quantization of string based on BRS invariance
,”
Nucl. Phys. B
212
,
443
(
1983
).
14.
J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998), Vol. I.
15.
T.
Kugo
and
I.
Ojima
, “
Manifestly covariant canonical formalism of the Yang–Mills field theories I
,”
Prog. Theor. Phys.
60
,
1869
(
1978
).
16.
T.
Maskawa
and
K.
Yamawaki
, “
The problem of P+=0 mode in the null plane field theory and Dirac’s method of quantization
,”
Prog. Theor. Phys.
56
,
270
(
1976
).
17.
S.
Brodsky
and
C.
Pauli
, “
Discretized light cone quantization: Solution to a field theory in one space one time dimensions
,”
Phys. Rev. D
32
,
2001
(
1985
).
18.
S.
Hellerman
and
J.
Polchinski
, “
Compactification in the lightlike limit
,”
Phys. Rev. D
59
,
125002
(
1999
).
19.
J.
Polchinski
, “
Evaluation of the one loop string path integral
,”
Commun. Math. Phys.
104
,
37
(
1986
).
20.
S. S.
Gubser
,
S.
Gukov
,
I. R.
Klebanov
,
M.
Rangamani
, and
E.
Witten
, “
The Hagedorn transition in non-commutative open string theory
,” hep-th/0009140.
21.
D. Mumford, Tata Lectures on Theta II (Birkhäuser, Basel, 1984).
22.
A.
Bilal
, “
A comment on compactification of M theory on an (almost) lightlike circle
,”
Nucl. Phys. B
521
,
202
(
1998
);
A.
Bilal
, “
DLCQ of M theory as the lightlike limit
,”
Phys. Lett. B
435
,
312
(
1998
).
23.
S.
Uehara
and
S.
Yamada
, “
On the DLCQ as a light-like limit in string theory
,” hep-th/0008146.
24.
L.
Susskind
, “
Another conjecture about M(atrix) theory
,” hep-th/9704080.
25.
A.
Sen
, “
D0-branes on Tn and matrix theory
,”
Adv. Theor. Math. Phys.
2
,
51
(
1998
).
26.
N.
Seiberg
, “
Why is the matrix model correct?
,”
Phys. Rev. Lett.
79
,
3577
(
1997
).
27.
M.
Douglas
,
D.
Kabat
,
P.
Pouliot
, and
S. H.
Shenker
, “
D-branes and short distances in string theory
,”
Nucl. Phys. B
485
,
85
(
1997
),
M.
Douglas
,
D.
Kabat
,
P.
Pouliot
, and
S. H.
Shenker
, hep-th/9608024.
28.
N.
Seiberg
, “
Matrix description of M-theory on T5 and T5/Z2,
Phys. Lett. B
408
,
98
(
1997
).
29.
P. S.
Aspinwall
, “
Some relationships between dualities in string theory
,”
Nucl. Phys. (Proc. Suppl.)
46
,
30
(
1996
).
30.
J. H.
Schwarz
, “
The power of M theory
,”
Phys. Lett. B
367
,
97
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.