A quasilinear hyperbolic system of two first-order equations is introduced. The system is linearized by means of the hodograph transformation combined with Riemann’s method of characteristics. In the process of linearization, the main step is to explicitly express the characteristic velocities in terms of the Riemann invariants. The procedure is shown to be performed by quadrature only for specific combinations of the parameters in the system. We then apply the method developed here to the dispersionless versions of the typical coupled Korteweg–de Vries (cKdV) equations including the Broer–Kaup, Ito, Hirota–Satsuma, and Bogoyavlenskii equations and show that these equations are transformed into the classical Euler–Darboux equation. A more general quasilinear system of equations is also considered with application to the dispersionless cKdV equations for the Jaulent–Miodek and Nutku–Ög̃uz equations.

1.
F. Calogero and A. Degasperis, Spectral Transform and Solitons I (North–Holland, Amsterdam, 1982).
2.
S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Consultant Bureau, New York, 1984).
3.
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (Cambridge University Press, New York, 1991).
4.
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Springer, New York, 1999).
5.
J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques (Wadsworth & Books, California, 1990).
6.
S. P.
Tsarev
,
Dokl. Akad. Nauk SSSR
282
,
534
(
1985
)
S. P.
Tsarev
, [
Sov. Math. Dokl.
31
,
488
(
1985
)].
7.
N. J.
Zabusky
,
J. Math. Phys.
3
,
1028
(
1962
).
8.
W. F.
Ames
,
R. J.
Lohner
, and
E.
Adams
,
Int. J. Non-Linear Mech.
16
,
439
(
1981
).
9.
E. T.
Copson
,
Arch. Ration. Mech. Anal.
1
,
324
(
1958
).
10.
W. A. Ames, Nonlinear Partial Differential Equations in Engineering (Academic, New York, 1965), Vol. I.
11.
W.
Miller
Jr.
,
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
4
,
314
(
1973
).
12.
E. G.
Kainins
and
W.
Miller
, Jr.
,
J. Math. Phys.
17
,
369
(
1976
).
13.
L. J. F.
Broer
,
Appl. Sci. Res.
31
,
377
(
1975
).
14.
D. J.
Kaup
,
Prog. Theor. Phys.
54
,
396
(
1975
).
15.
M.
Ito
,
Phys. Lett. A
91
,
335
(
1982
).
16.
R.
Hirota
and
J.
Satsuma
,
Phys. Lett. A
85
,
407
(
1981
).
17.
O. I.
Bogoyavlenskii
,
Usp. Mat. Nauk
44
,
29
(
1989
)
O. I.
Bogoyavlenskii
, [
Russian Math Surveys
44
,
35
(
1989
)].
18.
G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).
19.
M.
Jaulent
and
I.
Miodek
,
Lett. Math. Phys.
1
,
243
(
1976
).
20.
D.
Levi
,
A.
Sym
, and
S.
Wojciechowski
,
J. Phys. A
16
,
2423
(
1983
).
21.
Y.
Nutku
and
Ö.
Og̃uz
,
Nuovo Cimento Soc. Ital. Fis., B
105B
,
1381
(
1990
).
22.
S.
Kawamoto
,
J. Phys. Soc. Jpn.
53
,
1203
(
1984
);
E.V.
Krishnan
,
J. Phys. Soc. Jpn.
55
,
3753
(
1986
);
C.
Cuha-Roy
,
B.
Bagchi
, and
D. K.
Sinha
,
J. Math. Phys.
27
,
2558
(
1986
);
C.
Guha-Roy
,
Int. J. Theor. Phys.
29
,
863
(
1989
);
C.
Guha-Roy
,
Int. J. Mod. Phys. B
B 3
,
871
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.