The integrals of motion of the classical two-dimensional superintegrable systems with quadratic integrals of motion close in a restrained quadratic Poisson algebra, whose the general form is investigated. Each classical superintegrable problem has a quantum counterpart, a quantum superintegrable system. The quadratic Poisson algebra is deformed into a quantum associative algebra, the finite-dimensional representations of this algebra are calculated by using a deformed parafermion oscillator technique. It is shown that the finite dimensional representations of the quadratic algebra are determined by the energy eigenvalues of the superintegrable system. The calculation of energy eigenvalues is reduced to the solution of algebraic equations, which are universal, that is for all two-dimensional superintegrable systems with quadratic integrals of motion.

1.
J.
Hietarinta
, “
Direct methods for the search of the 2nd invariant
,”
Phys. Rev. C
147
,
87
(
1987
).
2.
M. F.
Rañada
, “
Superintegrable N=2 systems, quadratic constants of motion, and potentials of Drach
,”
J. Math. Phys.
38
,
4165
(
1997
).
3.
M. F.
Rañada
and
M.
Santander
, “
Superintegrable systems on the two-dimensional sphere S2 and the hypelbolic plane H2,
J. Math. Phys.
40
,
5026
(
1999
).
4.
E. G.
Kalnins
,
W.
Miller
, and
G. S.
Pogosyan
, “
Completeness of multiseparable superintegrability in E2,C,
J. Phys. A
33
,
4105
(
2000
).
5.
J.
Friš
,
Ya. A.
Smorodinsky
,
M.
Uhlir
, and
P.
Winternitz
, “
On higher symmetries in quantum mechanics
,”
Phys. Lett.
16
,
354
(
1965
);
J.
Friš
,
Ya. A.
Smorodinsky
,
M.
Uhlir
, and
P.
Winternitz
, “
Symmetry groups in classical and quantum mechanics
,”
Sov. J. Nucl. Phys.
4
,
444
(
1967
);
A. A.
Makarov
,
Ya. A.
Smorodinsky
,
Kh.
Valiev
, and
P.
Winternitz
, “
A systematic search for nonrelativistic systems with dynamical symmetries
,”
Nuovo Cimento A
52
,
1061
(
1967
).
6.
E. G. Kalnins, W. Miller, and G. S. Pogosyan, “Multiseparability and superintegrability in three dimensions,” preprint, 2000.
7.
D.
Bonatsos
,
C.
Daskaloyannis
, and
K.
Kokkotas
, “
Quantum-algebraic description of quantum superintegrable systems in 2 dimensions
,”
Phys. Rev. A
48
,
R3407
(
1993
).
8.
D.
Bonatsos
,
C.
Daskaloyannis
, and
K.
Kokkotas
, “
Deformed oscillator algebras for 2-dimensional quantum superintegrable systems
,”
Phys. Rev. A
50
,
3700
(
1994
).
9.
E. G.
Kalnins
,
W.
Miller
, and
G. S.
Pogosyan
, “
Superintegrability and associated polynomial solutions—Euclidean-space and the sphere in 2 dimensions
,”
J. Math. Phys.
37
,
6439
(
1996
).
10.
E. G.
Kalnins
,
W.
Miller
, and
G. S.
Pogosyan
, “
Completness of multiseparable superintegrability on the complex 2-sphere
,”
J. Phys. A
33
,
6791
(
2000
).
11.
E. K.
Sklyanin
, “
Some algebraic structures connected with the Yang–Baxter equation
,”
Funct. Anal. Appl.
16
,
263
(
1983
);
this paper can be found in Yang–Baxter Equation in Integrable Systems, edited by M. Jimbo (World Scientific, Singapore, 1989), p. 244.
12.
F. H. L.
Essler
and
V.
Rittenberg
, “
Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries
,”
J. Phys. A
29
,
3375
(
1996
).
13.
Ya. I.
Granovskii
,
I. M.
Lutzenko
, and
A. S.
Zhedanov
, “
Mutual integrability, quadratic algebras and dynamical symmetry
,”
Ann. Phys. (N.Y.)
217
,
1
(
1992
).
14.
H. J.
Korsch
, “
On classical and quantum integrability
,”
Phys. Lett. A
90
,
113
(
1982
).
15.
J.
Hietarinta
and
B.
Grammaticos
, “
On the 2 correction terms in quantum integrability
,”
J. Phys. A
22
,
1315
(
1989
).
16.
J.
Hietarinta
, “
Pure quantum integrability
,”
Phys. Lett. A
246
,
97
(
1998
).
17.
E. K.
Sklyanin
, “
Some algebraic structures connected with the Yang–Baxter Equation—Representations of quantum algebras
,”
Funct. Anal. Appl.
17
,
273
(
1984
); this paper can be found in Yang–Baxter Equation in Integrable Systems, edited by M. Jimbo (World Scientific, Singapore, 1989), p. 252.
18.
Ya. I.
Granovskii
,
A. S.
Zhedanov
, and
I. M.
Lutzenko
, “
Quadratic algebras and dynamics into the curved space, I. The oscillator
,”
Teor. Mat. Fiz.
91
,
207
(
1992
) (in Russian).
19.
Ya. I.
Granovskii
,
A. S.
Zhedano
, and
I. M.
Lutzenko
, “
Quadratic algebras and dynamics into the curved space, I. The Kepler problem
,”
Teor. Mat. Fiz.
91
,
396
(
1992
) (in Russian).
20.
Ya. I.
Granovskii
,
A. S.
Zhedanov
, and
I. M.
Lutzenko
, “
Quadratic algebra as a hidden symmetry of the Hartmann potential
,”
J. Phys. A
24
,
3887
(
1991
).
21.
E. G.
Kalnins
,
W.
Miller
, and
G. S.
Pogosyan
, “
Superintegrability on the 2-dimensional hyperboloid
,”
J. Math. Phys.
38
,
5416
(
1997
).
22.
E. G.
Kalnins
,
W.
Miller
,
Y. M.
Hakobyan
, and
G. S.
Pogosyan
, “
Superintegrability on the 2-dimensional hyperboloid—II
,”
J. Math. Phys.
40
,
2291
(
1999
),
E. G.
Kalnins
,
W.
Miller
,
Y. M.
Hakobyan
, and
G. S.
Pogosyan
, and preprint quant-ph/9907037.
23.
P. W.
Higgs
, “
Dynamical symmetries in a spherical geometry I
,”
J. Phys. A
12
,
309
(
1979
).
24.
P.
Létourneau
and
L.
Vinet
, “
Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians
,”
Ann. Phys. (N.Y.)
243
,
144
(
1995
).
25.
O. F.
Gal’bert
,
Ya. I.
Granovskii
, and
A. S.
Zhedanov
, “
Dynamical symmetry of anisotropic singular oscillator
,”
Phys. Lett. A
153
,
177
(
1991
).
26.
A. S.
Zhedanov
, “
The Higgs algebra as a quantum deformation of su(2)
,”
Mod. Phys. Lett. A
7
,
507
(
1992
).
27.
C.
Daskaloyannis
, “
Generalized deformed oscillator and nonlinear algebras
,”
J. Phys. A
24
,
L789
(
1991
).
28.
C.
Quesne
, “
Generalized deformed parafermions, nonlinear deformations of so(3) and exactly solvable potentials
,”
Phys. Lett. A
193
,
248
(
1994
).
29.
A. C.
Tsiganov
, “
On the Drach superintegrable systems
,”
J. Phys. A
33
,
7407
(
2000
).
30.
K.
Odaka
,
T.
Kishi
, and
S.
Kamefuchi
, “
On quantization of simple harmonic-oscillators
,”
J. Phys. A
24
,
L591
(
1991
).
31.
J.
Beckers
, and
N.
Debergh
, “
On a general framework for Q-particles, paraparticles and Q-paraparticles through deformations
,”
J. Phys. A
24
,
L1277
(
1991
).
32.
M.
Arik
,
E.
Dermican
,
T.
Turgut
,
L.
Ekinci
, and
X.
Mungan
, “
Fibonacci Oscillators
,”
Z. Phys. C
55
,
89
(
1992
).
33.
D.
Bonatsos
and
C.
Daskaloyannis
, “
General deformed schemes and N=2 supersymmetric quantum mechanics
,”
Phys. Lett. B
307
,
100
(
1993
).
34.
J.
Beckers
,
N.
Debergh
, and
C.
Quesne
, “
Parasupersymmetric quantum mechanics with generalized deformed parafermions
,”
Helv. Phys. Acta
69
,
60
(
1996
).
35.
S.
Klishevich
and
M.
Plyushchay
, “
Supersymmetry of parafermions
,” preprint 1999, hep-th/9905149.
36.
N.
Debergh
, “
On P=2 generalized deformed parafermions and exotic statistics
,”
J. Phys. A
28
,
4945
(
1995
).
37.
V. P.
Karassiov
, “
G-invariant polynomial extensions of Lie-algebras in quantum many-body physics
,”
J. Phys. A
27
,
153
(
1994
).
38.
V. P.
Karassiov
, “
Polynomial Lie-algebras in solving a class of integrable models of quantum optics—Exact methods and quasiclassics
,”
Czech. J. Phys.
48
,
1381
(
1998
).
39.
D.
Bonatsos
,
P.
Kolokotronis
, and
C.
Daskaloyannis
, “
Generalized deformed SU(2) algebras, deformed parafermionic oscillators and finite W-Algebras
,”
Mod. Phys. Lett. A
10
,
2197
(
1995
).
40.
A.
Abdesselam
,
J.
Beckers
,
A.
Chakrabarti
, and
N.
Debergh
, “
On nonlinear angular momentum theories, their representations and associated Hopf structures
,”
J. Phys. A
29
,
3075
(
1996
);
A.
Abdesselam
,
J.
Beckers
,
A.
Chakrabarti
, and
N.
Debergh
,
J. Phys. A
30
,
5239
(
1997
).
41.
N.
Debergh
, “
Supersymmetry of a multi-Boson Hamiltonian through the Higgs Algebra
,”
J. Phys. A
31
,
4013
(
1998
).
42.
J.
Beckers
,
Y.
Brihaye
, and
N.
Debergh
, “
Supersymmetry of multi-Boson Hamiltonians
,”
Mod. Phys. Lett. A
14
,
1149
(
1999
).
43.
J.
Vanderjeugt
, and
R.
Jagannathan
, “
Polynomial deformations of Osp(1/2) and generalized parabosons
,”
J. Math. Phys.
36
,
4507
(
1995
).
44.
C.
Daskaloyannis
, “
Finite dimensional representations of quadratic algebras with three generators and applications
,” preprint, 2000, math-ph/0002001.
45.
E. G.
Kalnins
,
G. C.
Williams
,
W.
Miller, Jr.
, and
G. S.
Pogosyan
, “
Superintegrability in three-dimensional Euclidean space
,”
J. Math. Phys.
40
,
708
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.