The writhing number of a curve in 3-space is the standard measure of the extent to which the curve wraps and coils around itself; it has proved its importance for molecular biologists in the study of knotted DNA and of the enzymes which affect it. The helicity of a vector field defined on a domain in 3-space is the standard measure of the extent to which the field lines wrap and coil around one another; it plays important roles in fluid dynamics and plasma physics. The Biot–Savart operator associates with each current distribution on a given domain the restriction of its magnetic field to that domain. When the domain is simply connected, the divergence-free fields which are tangent to the boundary and which minimize energy for given helicity provide models for stable force-free magnetic fields in space and laboratory plasmas; these fields appear mathematically as the extreme eigenfields for an appropriate modification of the Biot–Savart operator. Information about these fields can be converted into bounds on the writhing number of a given piece of DNA. The purpose of this paper is to reveal new properties of the Biot–Savart operator which are useful in these applications.

1.
G.
Călugăreanu
, “
L’integral de Gauss et l’analyse des noeuds tridimensionnels
,”
Rev. Math. Pures Appl.
4
,
5
20
(
1959
).
2.
G.
Călugăreanu
, “
Sur les classes d’isotopie des noeuds tridimensionnels et leurs invariants
,”
Czech. Math. J.
11
,
588
625
(
1961
).
3.
G.
Călugăreanu
, “
Sur les enlacements tridimensionnels des courbes fermees
,”
Comm. Acad. R. P. Romine
11
,
829
832
(
1961
).
4.
F.
Brock Fuller
, “
The writhing number of a space curve
,”
Proc. Natl. Acad. Sci. U.S.A.
68
,
815
819
(
1971
).
5.
L.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
491
(
1958
).
6.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
7.
C. F. Gauss, “Integral formula for linking number,” in Zur Mathematischen Theorie de Electrodynamische Wirkungen, Collected Works, 2nd ed. (Koniglichen Gesellschaft des Wissenschaften, Gottingen, 1833), Vol. 5, p. 605.
8.
J.
White
, “
Self-linking and the Gauss integral in higher dimensions
,”
Am. J. Math.
91
,
693
728
(
1969
).
9.
F.
Brock Fuller
, “
Decomposition of the linking number of a closed ribbon: A problem from molecular biology
,”
Proc. Natl. Acad. Sci. U.S.A.
75
,
3557
3561
(
1978
).
10.
W.
Bauer
,
F. H. C.
Crick
, and
J.
White
, “
Supercoiled DNA
,”
Sci. Am.
243
,
118
143
(
1980
).
11.
J. C.
Wang
, “
DNA topoisomerases
,”
Sci. Am.
247
,
94
109
(
1982
).
12.
De Witt Sumners, “The role of knot theory in DNA research,” in Geometry and Topology; Manifolds, Varieties, and Knots, edited by Clint McCrory and Ted Shifrin (Marcel Dekker, New York, 1987), pp. 297–318.
13.
De Witt
Sumners
, “
Untangling DNA
,”
Math. Intelligencer
12
,
73
80
(
1990
).
14.
De Witt
Sumners
, “
Knot theory and DNA,” in New Scientific Applications of Geometry and Topology
,
AMS Proc. of Symposia in Applied Math.
45
,
1
16
(
1992
).
15.
J.
Cantarella
,
R.
Kusner
, and
J.
Sullivan
, “
Tight knot values deviate from linear relation
,”
Nature (London)
392
,
237
(
1998
).
16.
S.
Lomonaco
, “
The modern legacies of Thompson’s atomic vortex theory in classical electrodynamics
,”
AMS Proc. Symposia Applied Math.
51
,
145
166
(
1996
).
17.
L.
Woltjer
, “
The Crab Nebula
,”
Bull. Astron. Inst. Neth.
14
,
39
80
(
1958
).
18.
S.
Lundquist
, “
Magneto-hydrostatic fields
,”
Ark. Fys.
2
,
361
365
(
1951
).
19.
S.
Chandrasekhar
and
P. C.
Kendall
, “
On force-free magnetic fields
,”
Astrophys. J.
126
,
457
460
(
1957
).
20.
Peter
Laurence
and
Marco
Avellaneda
, “
On Woltjer’s variational principle for force-free fields
,”
J. Math. Phys.
32
,
1240
1253
(
1991
).
21.
Y.
Tsuji
, “
Force-free magnetic fields in the axisymmetric torus of arbitrary aspect ratio
,”
Phys. Fluids B
3
,
3379
3387
(
1991
).
22.
G. Marsh, Force-Free Magnetic Fields—Solutions, Topology, and Applications (World Scientific, Singapore, 1996).
23.
M. A.
Berger
and
G. B.
Field
, “
The topological properties of magnetic helicity
,”
J. Fluid Mech.
147
,
133
148
(
1984
).
24.
H. K.
Moffatt
and
R. L.
Ricca
, “
Helicity and the Calugareanu invariant
,”
Proc. R. Soc. London, Ser. A
439
,
411
429
(
1992
).
25.
R. L. Ricca and H. K. Moffatt, “The helicity of a knotted vortex filament,” in Topological Aspects of Dynamics of Fluids and Plasmas, edited by H. K. Moffat et al. (Kluwer Academic, Dordrecht, 1992), pp. 225–236.
26.
J. H. C.
Whitehead
, “
An expression of Hopf’s invariant as an integral
,”
Proc. Natl. Acad. Sci. U.S.A.
33
,
117
123
(
1947
).
27.
V. I.
Arnold
, “
The asymptotic Hopf invariant and its applications
,” English translation in
Selecta Math. Sov.
5
,
327
342
(
1986
).
28.
J. Cantarella, D. DeTurck, and H. Gluck, “Upper bounds for the writhing of knots and the helicity of vector fields,” in Proceedings of the Conference in Honor of the 70th Birthday of Joan Birman, AMS/IP Series on Advanced Mathematics, edited by J. Gilman, X.-S. Lin, and W. Menasco (International Press, 2000).
29.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
The spectrum of the curl operator on spherically symmetric domains
,”
Phys. Plasmas
7
,
2766
2775
(
2000
).
30.
J. Cantarella, D. DeTurck, and H. Gluck, “The principal eigenvalue of the curl operator on the flat torus,” J. Math. Phys. (to be submitted).
31.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
Isoperimetric problems for the helicity of vector fields and the Biot–Savart and curl operators
,”
J. Math. Phys.
41
,
5615
5641
(
2000
).
32.
J. Cantarella, “Topological structure of stable plasma flows,” Ph.D. thesis, University of Pennsylvania, 1999.
33.
J. Cantarella, D. DeTurck, H. Gluck, and M. Teytel, “Influence of geometry and topology on helicity,” in Magnetic Helicity in Space and Laboratory Plasmas, edited by M. Brown, R. Canfield, and A. Pevtsov (American Geophysical Union, Washington, D.C., 1999), Geophysical Monograph Vol. 111, pp. 17–24.
34.
Z.
Yoshida
and
Y.
Giga
, “
Remarks on spectra of operator rot
,”
Math. Z.
204
,
235
245
(
1990
).
35.
Z.
Yoshida
, “
Discrete eigenstates of plasmas described by the Chandrasekhar–Kendall functions
,”
Prog. Theor. Phys.
86
,
45
55
(
1991
).
36.
H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Liquids (Cambridge University Press, Cambridge, 1978).
37.
S. Childress, “Fast dynamo theory,” in Topological Aspects of the Dynamics of Fluids and Plasmas, edited by H. K. Moffatt et al. (Kluwer Academic, Dordrecht, 1992).
38.
H. K. Moffatt and A. Tsinober, Topological Fluid Mechanics (Cambridge University Press, Cambridge, 1990).
39.
H. K. Moffatt, G. M. Zaslavsky, P. Comte, and M. Tabor, Topological Aspects of the Dynamics of Fluids and Plasmas (Kluwer Academic, Dordrecht, 1992).
40.
J.
Etnyre
and
R.
Ghrist
, “
Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture
,”
Nonlinearity
13
,
441
458
(
2000
).
41.
H.
Weyl
, “
The method of orthogonal projection in potential theory
,”
Duke Math. J.
7
,
411
444
(
1940
).
42.
K. O.
Friedrichs
, “
Differential forms on Riemannian manifolds
,”
Commun. Pure Appl. Math.
8
,
551
590
(
1955
).
43.
A. A. Blank, K. O. Friedrichs and H. Grad, “Theory of Maxwell’s equations without displacement current. Theory on magnetohydrodynamics V,” AEC Research and Development Report No. MHS , NYO-6486, 1957.
44.
G. Schwarz, Hodge Decomposition: A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics, No. 1607 (Springer-Verlag, Berlin, 1995).
45.
J. Cantarella, D. DeTurck, and H. Gluck, “Hodge decomposition of vector fields on bounded domains in 3-space,” Am. Math. Mon. (to appear).
46.
D. Griffiths, Introduction to Electrodynamics, 2nd ed. (Prentice–Hall, New Jersey, 1989).
47.
G. Folland, Introduction to Partial Differential Equations (Princeton University Press, Princeton, 1995).
48.
R. Zimmer, Essential Results of Functional Analysis (University of Chicago Press, Chicago, 1990).
49.
R. A. R. Tricker, Early Electrodynamics: The First Law of Circulation (Pergamon, Oxford, 1965).
50.
H. C. Oersted, “Experiments on the effect of a current of electricity on the magnetic needle,” Thomson’s Annals of Philosophy (October, 1820).
51.
J.-B.
Biot
and
F.
Savart
, “
Note sur le magnetisme de la pile de Volta
,”
Ann. Chim. Phys.
15
,
222
223
(
1820
).
52.
J.-B. Biot, Precise Elementaire de Physique Experimentale, 3rd ed. (Chez Deterville, Paris, 1820), Vol. II.
This content is only available via PDF.
You do not currently have access to this content.