This paper establishes the precise relationship between the macroscopic class of factorized Rivlin–Sawyers equations and a class of microscopic-based stochastic models. The former is a well-established and popular class of rheological models for polymeric fluids, while the latter is a more recently introduced class of rheological models which combines aspects of network and reptation theory with aspects of continuum mechanic models. It is shown that the two models are equivalent in a defined sense under certain unrestrictive assumptions. The first part of the proof gives the functional relationship between the linear viscoelastic memory function of the Rivlin–Sawyers model and the probability density for creation times of random variables in the stochastic model. The main part of the proof establishes the relationship between the strain descriptions in each model by showing that the difference in corresponding strain expressions can be made arbitrarily small using the appropriate weighted norm from spectral approximation theory.

1.
R.S.
Rivlin
and
K.N.
Sawyers
, “
Nonlinear continuum mechanics of viscoelastic fluids
,”
Annu. Rev. Fluid Mech.
3
,
117
146
(
1971
).
2.
B.
Bernstein
,
E.A.
Kearsley
, and
L.J.
Zapas
, “
A study of stress relaxation with finite strain
,”
Trans. Soc. Rheol.
7
,
391
410
(
1963
).
3.
A. Kaye, College of Aeronautics, Cranfield, Note No. 134, 1962.
4.
A.S.
Lodge
, “
A network theory of flow birefringence and stress in concentrated polymer solutions
,”
Trans. Faraday Soc.
52
,
120
130
(
1956
).
5.
A.S.
Lodge
, “
Constitutive equations from molecular network theories for polymer solutions
,”
Rheol. Acta
7
,
379
392
(
1968
).
6.
M.
Doi
and
S.F.
Edwards
, “
Dynamics of concentrated polymer systems. 1. Brownian motion in the equilibrium state
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1789
1801
(
1978
).
7.
M.
Doi
and
S.F.
Edwards
, “
Dynamics of concentrated polymer systems. 2. Molecular motion under flow
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1802
1817
(
1978
).
8.
M.
Doi
and
S.F.
Edwards
, “
Dynamics of concentrated polymer systems. 3. The constitutive equation
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1818
1832
(
1978
).
9.
M.
Doi
and
S.F.
Edwards
, “
Dynamics of concentrated polymer systems. 4. Rheological properties
,”
J. Chem. Soc., Faraday Trans. 2
75
,
38
54
(
1979
).
10.
C.F.
Curtiss
and
R.B.
Bird
, “
A kinetic theory for polymer melts. 1. The equation for the single-link orientational distribution function
,”
J. Chem. Phys.
74
,
2016
2025
(
1981
).
11.
C.F.
Curtiss
and
R.B.
Bird
, “
A kinetic theory for polymer melts. 2. The stress tensor and the rheological equation of state
,”
J. Chem. Phys.
74
,
2026
2033
(
1981
).
12.
M.
Laso
and
H.C.
Öttinger
, “
Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach
,”
J. Non-Newtonian Fluid Mech.
47
,
1
20
(
1993
).
13.
K.
Feigl
,
M.
Laso
, and
H.C.
Öttinger
, “
The CONNFFESSIT approach for solving a two-dimensional viscoelastic fluid problem
,”
Macromolecules
28
,
3261
3274
(
1995
).
14.
C.C.
Hua
and
J.D.
Schieber
, “
Application of kinetic theory models in spatiotemporal flows for polymer solutions, liquid crystals, and polymer melts using the CONNFFESSIT approach
,”
Chem. Eng. Sci.
51
,
1473
1485
(
1996
).
15.
C.C.
Hua
and
J.D.
Schieber
, “
Viscoelastic flow through fibrous media using the CONNFFESSIT approach
,”
J. Rheol.
42
,
477
491
(
1998
).
16.
M.
Laso
,
M.
Picasso
, and
H.C.
Öttinger
, “
Two-dimensional, time-dependent viscoelastic calculations using CONNFFESSIT
,”
AIChE J.
43
,
877
892
(
1997
).
17.
T.W.
Bell
,
G.H.
Nyland
,
M.D.
Graham
, and
J.J.
de Pablo
, “
Combined Brownian dynamics and spectral method simulations of the recovery of polymeric fluids after shear flow
,”
Macromolecules
30
,
1806
1812
(
1997
).
18.
J.
Bonvin
and
M.
Picasso
, “
Variance reduced methods for CONNFFESSIT-like simulations
,”
J. Non-Newtonian Fluid Mech.
84
,
191
215
(
1999
).
19.
M.A.
Hulsen
,
A.P.G.
van Heel
, and
B.H.A.A.
van den Brule
, “
Simulation of viscoelastic flows using Brownian configuration fields
,”
J. Non-Newtonian Fluid Mech.
70
,
79
101
(
1997
).
20.
B.
van den Brule
,
T.
van Heel
, and
M.
Hulsen
, “
Brownian configuration fields: A new method for simulating viscoelastic fluid flow
,”
Macromol. Symp.
121
,
205
217
(
1997
).
21.
H.C.
Öttinger
,
B.H.A.A.
van den Brule
, and
M.A.
Hulsen
, “
Brownian configuration fields and variance reduced CONNFFESSIT
,”
J. Non-Newtonian Fluid Mech.
70
,
255
261
(
1997
).
22.
A.P.G.
van Heel
,
M.A.
Hulsen
, and
B.H.A.A.
van den Brule
, “
Simulation of the Doi–Edwards model in complex flow
,”
J. Rheol.
43
,
1239
1260
(
1999
).
23.
E.A.J.F.
Peters
,
A.P.G.
van Heel
,
M.A.
Hulsen
, and
B.H.A.A.
van den Brule
, “
Generalization of the deformation field method to simulate advanced reptation models in complex flow
,”
J. Rheol.
44
,
811
829
(
2000
).
24.
X.-J.
Fan
,
N.
Phan-Thien
, and
R.
Zheng
, “
Simulation of fibre suspension flows by the Brownian configuration field method
,”
J. Non-Newtonian Fluid Mech.
84
,
257
274
(
1999
).
25.
K.
Feigl
and
H.C.
Öttinger
, “
A new class of stochastic simulation models for polymer stress calculation
,”
J. Chem. Phys.
109
,
815
826
(
1998
).
26.
K.
Feigl
and
H.C.
Öttinger
, “
Towards realistic rheological models for polymer melt processing
,”
Macromol. Symp.
121
,
187
203
(
1997
).
27.
N.
Phan-Thien
and
R.I.
Tanner
, “
New constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
365
(
1977
).
28.
M.H.
Wagner
, “
Network theory of polymer melts
,”
Rheol. Acta
18
,
33
50
(
1979
).
29.
F.
Petruccione
and
P.
Biller
, “
A numerical stochastic approach to network theories of polymeric fluids
,”
J. Chem. Phys.
89
,
577
582
(
1988
).
30.
F.
Petruccione
and
P.
Biller
, “
Rheological properties of network models with configuration-dependent creation and loss rates
,”
Rheol. Acta
27
,
557
560
(
1988
).
31.
P.
Biller
and
F.
Petruccione
, “
Continuous-time simulation of transient polymer network models
,”
J. Chem. Phys.
92
,
6322
6326
(
1990
).
32.
P.
Biller
and
F.
Petruccione
, “
Continuous-time simulation of transient polymer networks: Rheological properties
,”
Macromol. Symp.
45
,
169
175
(
1991
).
33.
H.C.
Öttinger
, “
Modified reptation model
,”
Phys. Rev. E
50
,
4891
4895
(
1994
).
34.
M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics (Clarendon, Oxford, 1986).
35.
M.
Doi
, “
Explanation for the 3.4-power law for the viscosity of polymeric liquids on the basis of the tube model
,”
J. Polym. Sci., Polym. Phys. Ed.
21
,
667
684
(
1983
).
36.
C.C.
Hua
and
J.D.
Schieber
, “
Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions
,”
J. Chem. Phys.
109
,
10018
10027
(
1998
).
37.
C.C.
Hua
,
J.D.
Schieber
, and
D.C.
Venerus
, “
Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. II. Double-step strain predictions
,”
J. Chem. Phys.
109
,
10028
10032
(
1998
).
38.
C.C.
Hua
,
J.D.
Schieber
, and
D.C.
Venerus
, “
Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. III. Shear flows
,”
J. Rheol.
43
,
701
717
(
1999
).
39.
G.
Marrucci
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox–Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
40.
G.
Ianniruberto
and
G.
Marrucci
, “
On compatibility of the Cox–Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
,
241
246
(
1996
).
41.
D.W.
Mead
,
R.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
42.
D.
Pearson
,
E.
Herbolzheimer
,
N.
Grizzuti
, and
G.
Marrucci
, “
Transient behavior of entangled polymers at high shear rates
,”
J. Polym. Sci., Part B: Polym. Phys.
29
,
1589
1597
(
1991
).
43.
G.
Marrucci
and
B.
de Cindio
, “
The stress relaxation of molten PMMA at large deformations and its theoretical interpretation
,”
Rheol. Acta
19
,
68
75
(
1980
).
44.
G.
Marrucci
and
J.J.
Hermans
, “
Nonlinear viscoelasticity of concentrated polymeric liquids
,”
Macromolecules
13
,
380
387
(
1980
).
45.
M.H.
Wagner
and
J.
Schaeffer
, “
Nonlinear strain measures for general biaxial extension of polymer melts
,”
J. Rheol.
36
,
1
26
(
1992
).
46.
G.
Ianniruberto
and
G.
Marrucci
, “
Stress tensor and stress-optical law in entangled polymers
,”
J. Non-Newtonian Fluid Mech.
79
,
225
234
(
1998
).
47.
G.
Marrucci
and
G.
Ianniruberto
, “
Open problems in tube models for concentrated polymers
,”
J. Non-Newtonian Fluid Mech.
82
,
275
286
(
1999
).
48.
H.C.
Öttinger
, “
A thermodynamically admissible reptation model for fast flows of entangled polymers
,”
J. Rheol.
43
,
1461
1493
(
1999
).
49.
H.C.
Öttinger
, “
Thermodynamically admissible reptation models with anisotropic tube cross sections and convective constraint release
,”
J. Non-Newtonian Fluid Mech.
89
,
165
186
(
2000
).
50.
H.C. Öttinger, Stochastic Processes in Polymeric Fluids, Tools and Examples for Developing Simulation Algorithms (Springer, Berlin, 1996).
51.
D. Funaro, “Estimates of Laguerre spectral projectors in Sobolev spaces” in Orthogonal Polynomials and their Applications, edited by C. Brezinski, L. Gori, and A. Ronveaux (J.C. Baltzer AG, Scientific Publishing, IMACS, 1991), pp. 263–266.
52.
O.
Coulaud
,
D.
Funaro
, and
O.
Kavian
, “
Laguerre spectral approximation of elliptic problems in exterior domains
,”
Comput. Methods Appl. Mech. Eng.
80
,
451
458
(
1990
).
53.
Y.
Maday
,
B.
Pernaud-Thomas
, and
H.
Vandeven
, “
Une réhabilitation des méthodes spectrales de type Laguerre
,”
Rech. Aerosp.
6
,
353
375
(
1985
).
54.
C. Bernardi and Y. Maday, “Spectral methods” in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.-L. Lions (North–Holland, Amsterdam, 1997), Vol. 5, pp. 209–485.
55.
C. Bernardi, Y. Maday, and A.T. Patera, “Spectral element methods” in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.-L. Lions (North–Holland, Amsterdam, to appear).
56.
R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley–Interscience, New York, 1953).
This content is only available via PDF.
You do not currently have access to this content.