Green functions (retarded, advanced, Feynman and Dyson propagators) are calculated for the electromagnetic field in Robertson–Walker cosmologies with hyperbolic 3-manifolds as spacelike slices. The starting point is the Proca equation, i.e., the Maxwell field with a finite photon mass for infrared regularization, in a static cosmology with simply connected hyperbolic 3-sections. The time and space components of the resolvent kernel are scalar and vectorial point-pair invariants, respectively, and this symmetry allows for an explicit evaluation in the spectral representation. It is found that the quantum propagators have a logarithmic infrared singularity, which drops out in the zero curvature limit. Retarded and advanced Green functions remain well defined in the limit of zero photon mass, and they admit a simple generalization, by conformal scaling, to expanding 3-spaces. In cosmologies with multiply connected hyperbolic 3-manifolds as spacelike sections, the four enumerated propagators are constructed by means of Poincaré series. The spectral decomposition of the Green functions is given in terms of Eisenstein series for a certain class of open hyperbolic 3-spaces, including those with Schottky covering groups corresponding to solid handle-bodies as spacelike slices.

1.
G. W. Gibbons, in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979).
2.
N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1994).
3.
J. A.
Wheeler
and
R. P.
Feynman
,
Rev. Mod. Phys.
17
,
157
(
1945
).
4.
R.
Tomaschitz
,
Class. Quantum Grav.
18
,
4395
(
2001
).
5.
L. V. Ahlfors, Möbius Transformations in Several Dimensions, Lecture Notes (University of Minnesota, Minneapolis, 1981).
6.
S. J. Patterson, in Analytical and Geometrical Aspects of Hyperbolic Space, edited by D. B. A. Epstein (Cambridge University Press, London, 1987).
7.
D. A. Hejhal, The Selberg Trace Formula for PSL (2, R) (Springer, New York, 1976), Vol. 1, LNM 548.
8.
D. A. Hejhal, The Selberg Trace Formula for PSL(2, R) (Springer, New York, 1983), Vol. 2, LNM 1001.
9.
J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space: Harmonic Analysis and Number Theory (Springer, Berlin, 1998).
10.
N.
Mandouvalos
,
Proc. London Math. Soc.
57
,
209
(
1988
).
11.
A. S.
Goldhaber
and
M. M.
Nieto
,
Rev. Mod. Phys.
43
,
277
(
1971
).
12.
A. E. Beardon, The Geometry of Discrete Groups (Springer, New York, 1983).
13.
R.
Tomaschitz
,
J. Math. Phys.
34
,
3133
(
1993
).
14.
N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).
15.
G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1996).
16.
F.
Bloch
and
A.
Nordsieck
,
Phys. Rev.
52
,
54
(
1937
).
17.
R.
Tomaschitz
,
Class. Quantum Grav.
16
,
3349
(
1999
).
18.
S. J. Paterson, in Number Theory, Trace Formulas, and Discrete Groups, edited by K. E. Aubert (Academic, Boston, 1989).
19.
S. L. Krushkal, B. N. Apanasov, and N. A. Grusevskii, Kleinian Groups and Uniformization in Examples and Problems (AMS, Providence, 1986).
20.
B. Maskit, Kleinian Groups (Springer, New York, 1986).
21.
R.
Tomaschitz
,
Physica D
34
,
42
(
1989
).
22.
J.
Dodziuk
and
J.
Jorgenson
,
Mem. Am. Math. Soc.
643
,
1
(
1998
).
23.
K. Matsuzaki and M. Taniguchi, Hyperbolic Manifolds and Kleinian Groups (Clarendon, Oxford, 1998).
24.
M. Kapovich, Hyperbolic Manifolds and Discrete Groups (Birkhäuser, Boston, 2001)
25.
M. Gel’fand and G. E. Shilov, Generalized Functions (Academic, New York, 1972), Vol. 1.
This content is only available via PDF.
You do not currently have access to this content.