A new system of integrable nonlinear equations of hyperbolic type, obtained by a two-dimensional reduction of the anti-self-dual Yang–Mills equations, is presented. It represents a generalization of the Ernst–Weyl equation of General Relativity related to colliding neutrino and gravitational waves, as well as of the fourth order equation of Schwarzian type related to the KdV hierarchies, which was introduced by Nijhoff, Hone, and Joshi recently. An auto-Bäcklund transformation of the new system is constructed, leading to a superposition principle remarkably similar to the one connecting four solutions of the KdV equation. At the level of the Ernst–Weyl equation, this Bäcklund transformation and the associated superposition principle yield directly a generalization of the single and double Harrison transformations of the Ernst equation, respectively. The very method of construction also allows for revealing, in an essentially algorithmic fashion, other integrability features of the main subsystems, such as their reduction to the Painlevé transcendents.

1.
R. S. Ward, “Integrable Systems in Twistor Theory,” London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 1990), Vol. 156, 246–259.
2.
L.
Witten
,
Phys. Rev. D
19
,
718
(
1979
).
3.
R. S.
Ward
,
Gen. Relativ. Gravit.
15
,
105
(
1983
).
4.
N. M. J.
Woodhouse
,
Class. Quantum Grav.
4
,
799
(
1987
).
5.
N. M. J.
Woodhouse
,
Class. Quantum Grav.
6
,
933
(
1989
).
6.
N. M. J. Woodhouse, “Spinors, twistors, and complex methods,” in General Relativity and Gravitation, Proceedings of the 12th International Conference on General Relativity and Gravitation, edited by N. Ashby, D. F. Bartlett, and W. Wyss (Cambridge University Press, Cambridge, 1990), pp. 93–98.
7.
J. Fletcher and N. M. J. Woodhouse, Twistor characterization of axisymmetric solution of Einstein equations, in Twistors in Mathematics and Physics, Ref. 1, pp. 260–282.
8.
L. J. Mason and N. M. J. Woodhouse, Integrability Self-Duality, and Twistor Theory, London Mathematical Society Monographs 15 (Oxford University Press, Oxford, 1996).
9.
F.
Nijhoff
,
A.
Hone
, and
N.
Joshi
,
Phys. Lett. A
267
,
147
(
2000
).
10.
J. B.
Griffiths
,
Class. Quantum Grav.
9
,
207
(
1991
).
11.
M. Nakahara, Geometry, Topology and Physics (Adam Hilger, IOP Publ. Ltd., Bristol, 1991).
12.
R. S.
Ward
,
Phys. Lett. A
61
,
81
(
1977
).
13.
A. A.
Belavin
and
V. E.
Zakharov
,
Phys. Lett. B
73
,
53
(
1978
).
14.
C. Rogers and W. F. Shadwick Bäcklund Transformations and Their Applications (Academic, New York, 1982).
15.
M.
Crampin
,
Phys. Lett. A
66
,
170
(
1978
).
16.
In the case we are considering the CKVs X,Y map α-planes to parallel α-planes, hence there is no ζ component of the lifted vectors to the twistor space, the space of all α-planes.
17.
I.
Hauser
and
F. J.
Ernst
,
J. Math. Phys.
30
,
872
(
1989
);
I.
Hauser
and
F. J.
Ernst
,
J. Math. Phys.
30
,
2322
(
1989
);
I.
Hauser
and
F. J.
Ernst
,
J. Math. Phys.
31
,
871
(
1990
);
I.
Hauser
and
F. J.
Ernst
,
J. Math. Phys.
32
,
198
(
1991
).
18.
A. O. Barut and R. Raczka, Theory of Group Representations and Applications (Polish Scientific Publishers, Warszawa, 1980).
19.
The authors express their gratitude to the referee who suggested the possibility of expressing Eqs. (57) as a stationary Loewner system.
20.
B. G.
Konopelchenko
and
C.
Rogers
,
Phys. Lett. A
158
,
391
(
1991
);
B. G.
Konopelchenko
and
C.
Rogers
,
J. Math. Phys.
34
,
214
(
1993
).
21.
W. K.
Schief
,
Phys. Lett. A
267
,
265
(
2000
).
22.
W. K.
Schief
,
Proc. R. Soc. London, Ser. A
446
,
381
(
1994
).
23.
A.
Tongas
,
D.
Tsoubelis
, and
P.
Xenitidis
,
Phys. Lett. A
284
,
266
(
2001
).
24.
J. B. Griffiths, Colliding Plane Waves in General Relativity (Clarendon, Oxford, 1991).
25.
A. S.
Fokas
,
L.-Y.
Sung
, and
D.
Tsoubelis
,
Math. Phys., Anal. Geom.
1
,
313
(
1999
).
26.
F. J.
Ernst
,
A. D.
Garcia
, and
I.
Hauser
,
J. Math. Phys.
28
,
2155
(
1987
);
F. J.
Ernst
,
A. D.
Garcia
, and
I.
Hauser
,
J. Math. Phys.
28
,
2951
(
1987
);
F. J.
Ernst
,
A. D.
Garcia
, and
I.
Hauser
,
J. Math. Phys.
29
,
681
(
1988
).
27.
G.
Neugebauer
and
D.
Kramer
,
Ann. Phys. (Leipzig)
24
,
62
(
1969
).
28.
R. K. Dodd, General Relativity in Soliton Theory, A Survey of Results, edited by A. Fordy (Manchester University Press, Manchester, 1990).
29.
B. K.
Harrison
,
Phys. Rev. Lett.
41
,
1197
(
1978
).
30.
G. A.
Alekseev
,
Sov. Phys. Dokl.
28
,
133
(
1983
).
31.
G. A.
Alekseev
,
Physica D
152–153
,
97
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.