In a recent paper, Ališauskas deduced different triple sum expressions for the 9-j coefficient of su(2) and suq(2). For a singly stretched 9-j coefficient, these reduce to different double sum series. Using these distinct series, we deduce a set of new transformation formulas for double hypergeometric series of Kampé de Fériet type and their basic analogs. These transformation formulas are valid for rather general parameters of the series, although a common feature is that all the series appearing here are terminating. It is also shown that the transformation formulas deduced here generate a group of transformation formulas, thus yielding an invariance group or symmetry group of particular double series.

1.
E. Wigner, in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H. Van Dam (Academic, New York, 1965).
2.
A. R. Edmonds, Angular Momentum in Quantum Theory (Princeton U.P., Princeton, NJ, 1957).
3.
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Theory and Applications, and The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications, Vols. 8 and 9 (Addison–Wesley, Reading, MA, 1981).
4.
N. J. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions (Kluwer Academic, Dordrecht, 1991), Vol. 1.
5.
K. Srinivasa Rao and V. Rajeswari, Quantum Theory of Angular Momentum: Selected Topics (Springer-Verlag and Narosa, New Delhi, 1993).
6.
D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).
7.
S. J.
Ališauskas
and
A.P.
Jucys
,
J. Math. Phys.
12
,
594
(
1971
).
8.
A. P. Jucys and A. A. Bandzaitis, Angular Momentum in Quantum Physics (Mokslas, Vilnius, 1977).
9.
During the NATO Advanced Study Institute on “Special Functions 2000 : Present Perspectives and Future Directions” (State University of Arizona, May–June 2000), R. Askey launched his guess that the 9-j coefficient, as an orthogonal polynomial in two variables, can be represented as a double series.
10.
K. Srinivasa
Rao
,
V.
Rajeswari
, and
C. B.
Chiu
,
Comput. Phys. Commun.
56
,
231
(
1989
).
11.
H. M.
Srivastava
,
Proc. Cambridge Philos. Soc.
63
,
425
(
1967
).
12.
K.
Srinivasa Rao
and
J.
Van der Jeugt
,
J. Phys. A
27
,
3083
(
1994
).
13.
J.
Van der Jeugt
,
S.
Pitre
, and
K.
Srinivasa Rao
,
J. Phys. A
27
,
5251
(
1994
).
14.
S.
Pitre
and
J.
Van der Jeugt
,
J. Math. Anal. Appl.
202
,
121
(
1996
).
15.
H.
Rosengren
,
J. Math. Phys.
39
,
6730
(
1998
).
16.
H.
Rosengren
,
J. Math. Phys.
40
,
6689
(
1999
).
17.
L. J. Slater, Generalized Hypergeometric Functions (Cambridge U.P., Cambridge, 1966).
18.
S.
Ališauskas
,
J. Math. Phys.
41
,
7589
(
2000
).
19.
S.
Ališauskas
,
J. Phys. A
30
,
4615
(
1997
).
20.
W. N. Bailey, Generalized Hypergeometric Series (Cambridge U.P., Cambridge, 1935).
21.
P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite (Gauthier-Villars, Paris, 1926).
22.
J.
Kampé de Fériet
,
C. R. Acad. Sci. Paris
173
,
401
(
1921
).
23.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted, New York, 1985).
24.
N. T.
H’ai
,
O. I.
Marichev
, and
H. M.
Srivastava
,
J. Math. Anal. Appl.
164
,
104
(
1992
).
25.
G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge U.P., Cambridge, 1990).
26.
J. Van der Jeugt, “Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group,” J. Comput. Appl. Math. (in press, 2001).
27.
S. P.
Singh
,
J. Math. Phys. Sci.
28
,
189
(
1994
).
28.
J.
Van der Jeugt
and
K.
Srinivasa Rao
,
J. Math. Phys.
40
,
6692
(
1999
).
29.
M. Hamermesh, Group Theory, and Its Application to Physical Problems (Addison–Wesley, Reading, MA, 1962).
30.
R. Y.
Denis
,
Bull. Calcutta Math. Soc.
79
,
134
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.