We study the elliptic Cn and BCn Ruijsenaars–Schneider models which are elliptic generalization of systems given in previous paper by the present authors [Chen et al., J. Math. Phys. 41, 8132 (2000)]. The Lax pairs for these models are constructed by Hamiltonian reduction technology. We show that the spectral curves can be parametrized by the involutive integrals of motion for these models. Taking nonrelativistic limit and scaling limit, we verify that they lead to the systems corresponding to Calogero–Moser and Toda types.

1.
K.
Hasegawa
, “
Ruijsenaars’ commuting difference operators as commuting transfer matrices
,”
Commun. Math. Phys.
187
,
289
(
1997
).
2.
F.W.
Nijhoff
,
V.B.
Kuznetsov
,
E.K.
Sklyanin
, and
O.
Ragnisco
, “
Dynamical r-matrix for the elliptic Ruijsenaars–Schneider system
,”
J. Phys. A
29
,
L333
(
1996
).
3.
A.
Gorsky
and
A.
Marshakov
, “
Towards effective topological gauge theories on spectral curves
,”
Phys. Lett. B
375
,
127
(
1996
).
4.
N.
Nekrasov
, “
Five-dimension gauge theories and relativistic integrable systems
,” hep-th/9609219;
N.
Nekrasov
,
Nucl. Phys. B
531
,
323
(
1998
).
5.
H.W.
Braden
,
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
, “
The Ruijsenaars–Schneider model in the context of Seiberg–Witten theory
,” hep-th/9902205;
H.W.
Braden
,
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
,
Nucl. Phys. B
558
,
371
(
1999
).
6.
S.N.M.
Ruijsenaars
, “
Complete integrability of relativistic Calogero–Moser systems and elliptic function identities
,”
Commun. Math. Phys.
110
,
191
(
1987
).
7.
S.N.M.
Ruijsenaars
, “
Action-angle maps and scattering theory for some finite-dimensional integrable systems
,”
Commun. Math. Phys.
115
,
127
(
1988
).
8.
M.A.
Olshanetsky
and
A.M.
Perelomov
, “
Classical integrable finite-dimensional systems related to Lie algebras
,”
Phys. Rep.
71
,
314
(
1981
);
A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras (Birkhäuser, Boston, 1990).
9.
VI.
Inozemtsev
, “
Lax representation with spectral parameter on a torus for integrable particle systems
,”
Lett. Math. Phys.
17
,
11
(
1989
).
10.
E.
D’Hoker
and
D.H.
Phong
, “
Calogero–Moser Lax pairs with spectral parameter for general Lie algebras
,” hep-th/9804124;
E.
D’Hoker
and
D.H.
Phong
,
Nucl. Phys. B
530
,
537
(
1998
).
11.
A.J.
Bordner
,
E.
Corrigan
, and
R.
Sasaki
, “
Calogero–Moser Models. I. A new formulation
,” hep-th/9805106;
A.J.
Bordner
,
E.
Corrigan
, and
R.
Sasaki
,
Prog. Theor. Phys.
100
,
1107
(
1998
).
12.
A.J.
Bordner
,
R.
Sasaki
, and
K.
Takasaki
, “
Calogero–Moser Models. II. Symmetries and foldings
,” hep-th/9809068;
A.J.
Bordner
,
R.
Sasaki
, and
K.
Takasaki
,
Prog. Theor. Phys.
101
,
487
(
1999
).
13.
A.J.
Bordner
and
R.
Sasaki
, “
Calogero–Moser Models III: Elliptic potentials and twisting
,” hep-th/9812232;
A.J.
Bordner
and
R.
Sasaki
,
Prog. Theor. Phys.
101
,
799
(
1999
).
14.
A.J.
Bordner
,
E.
Corrigan
, and
R.
Sasaki
, “
Generalized Calogero–Moser models and universal Lax pair operators
,” hep-th/9905011;
A.J.
Bordner
,
E.
Corrigan
, and
R.
Sasaki
,
Prog. Theor. Phys.
102
,
499
(
1999
).
15.
J.C.
Hurtubise
and
E.
Markman
, “
Calogero–Moser systems and Hitchin systems
,” math.AG/9912161.
16.
A.J.
Bordner
,
N.S.
Manton
, and
R.
Sasaki
, “
Calogero–Moser models. V. Supersymmetry and quantum Lax pair
,” hep-th/9910033;
A.J.
Bordner
,
N.S.
Manton
, and
R.
Sasaki
,
Prog. Theor. Phys.
103
,
463
(
2000
).
17.
S.P.
Khastgir
,
A.J.
Pocklington
, and
R.
Sasaki
, “
Quantum Calogero–Moser models: Integrability for all root systems
,” hep-th/0005277.
18.
M.A.
Olshanetsky
and
A.M.
Perelomov
, “
Quantum integrable systems related to Lie algebras
,”
Phys. Rep.
94
,
313
(
1983
).
19.
M.
Bruschi
and
F.
Calogero
, “
The Lax pair representation for an integrable class of relativistic dynamical systems
,”
Commun. Math. Phys.
109
,
481
(
1987
).
20.
I.
Krichever
and
A.
Zabrodin
, “
Spin generalization of the Ruijsenaars–Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra
,”
Usp. Mat. Nauk
50
,
3
(
1995
).
21.
Y.B.
Suris
, “
Why are the rational and hyperbolic Ruijsenaars–Schneider hierarchies governed by the same R-operators as the Calogero–Moser ones?
,” hep-th/9602160.
22.
Y.B.
Suris
, “
Elliptic Ruijsenaars–Schneider and Calogero–Moser hierarchies are governed by the samer-matrix
,” solv-int/9603011;
Y.B.
Suris
,
Phys. Lett. A
225
,
253
(
1997
).
23.
G.E.
Arutyunov
,
S.A.
Frolov
, and
P.B.
Medvedev
, “
Elliptic Ruijsenaars–Schneider model from the cotangent bundle over the two-dimensional current group
,” hep-th/9608013;
G.E.
Arutyunov
,
S.A.
Frolov
, and
P.B.
Medvedev
,
J. Math. Phys.
38
,
5682
(
1997
).
24.
Y.
Komori
and
K.
Hikami
, “
Conserved operators of the generalized elliptic Ruijsenaars models
,”
J. Math. Phys.
39
,
6175
(
1998
).
25.
Y.
Komori
, “
Theta functions associated with the affine root systems and the elliptic Ruijsenaars operators
,” math.QA/9910003.
26.
J.F.
van Diejen
, “
Integrability of difference Calogero–Moser systems
,”
J. Math. Phys.
35
,
2983
(
1994
).
27.
J.F.
van Diejen
, “
Commuting difference operators with polynomial eigenfunctions
,”
Compositio. Math.
95
,
183
(
1995
).
28.
K.
Hasegawa
,
T.
Ikeda
, and
T.
Kikuchi
, “
Commuting difference operators arising from the elliptic C2(1)-face model
,”
J. Math. Phys.
40
,
4549
(
1999
).
29.
K.
Chen
,
B.Y.
Hou
, and
W.-L.
Yang
, “
The Lax pair forC2-type Ruijsenaars–Schneider model
,” hep-th/0004006;
K.
Chen
,
B.Y.
Hou
, and
W.-L.
Yang
,
Chin. Phys.
10
,
550
(
2001
).
30.
K.
Chen
,
B.Y.
Hou
, and
W.-L.
Yang
, “
Integrability of theCn andBCn Ruijsenaars–Schneider models
,” hep-th/0006004;
K.
Chen
,
B.Y.
Hou
, and
W.-L.
Yang
,
J. Math. Phys.
41
,
8132
(
2000
).
31.
J.
Avan
and
G.
Rollet
, “
BCn Ruijsenaars–Schneider models: R-matrix structure and Hamiltonians
,” hep-th/0008174.
32.
Y.
Ohta
, “
Instanton correction of prepotential in Ruijsenaars model associated withN=2 SU(2) Seiberg–Witten theory
,” hep-th/9909196;
Y.
Ohta
,
J. Math. Phys.
41
,
4541
(
2000
).
33.
J.
Avan
, “
Classical dynamical r-matrices for Calogero–Moser systems and their generalizations
,” q-alg/9706024.
34.
V.B.
Kuznetsov
,
F.W.
Nijhoff
, and
E.K.
Sklyanin
, “
Separation of variables for the Ruijsenaars system
,”
Commun. Math. Phys.
189
,
855
(
1997
).
35.
S.N.M.
Ruijsenaars
and
H.
Schneider
, “
A new class of integrable systems and its relation to solitons
,”
Ann. Phys. (Leipzig)
170
,
370
(
1986
).
36.
Paul A.M. Dirac, Lectures on Quantum Physics (Yeshiva University Press, New York, 1964).
37.
A.
Mironov
and
Morozov
, “
Double elliptic systems: Problems and perspectives
,” hep-th/0001168.
38.
A.
Mironov
, “
Seiberg–Witten theory and duality in integrable systems
,” hep-th/0011093.
39.
E.
D’Hoker
and
D.H.
Phong
, “
Lectures on supersymmetric Yang–Mills theory and integrable systems
,” hep-th/9912271.
40.
A. Marshakov, Seiberg–Witten Theory and Integrable Systems (World Scientific, Singapore, 1998).
41.
E.
D’Hoker
and
D.H.
Phong
, “
Spectral curves for Super-Yang–Mills with adjoint hypermultiplet for general Lie algebras
,” hep-th/9804126;
E.
D’Hoker
and
D.H.
Phong
,
Nucl. Phys. B
534
,
697
(
1998
).
42.
E.
D’Hoker
and
D.H.
Phong
, “
Lax pairs and spectral curves for Calogero–Moser and spin Calogero–Moser systems
,” hep-th/9903002.
43.
V. I.
Inozemtsev
, “
The finite Toda lattices
,”
Commun. Math. Phys.
121
,
628
(
1989
).
44.
E.
D’Hoker
and
D.H.
Phong
, “
Calogero–Moser and Toda systems for twisted and untwisted affine Lie Algebras
,” hep-th/9804125;
E.
D’Hoker
and
D.H.
Phong
,
Nucl. Phys. B
530
,
611
(
1998
).
45.
S.P.
Khastgir
,
R.
Sasaki
, and
K.
Takasaki
, “
Calogero–Moser Models. IV. Limits to Toda theory
,” hep-th/9907102;
S.P.
Khastgir
,
R.
Sasaki
, and
K.
Takasaki
,
Prog. Theor. Phys.
102
,
749
(
1999
).
46.
I.M.
Krichever
, “
Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles
,”
Funct. Anal. Appl.
14
,
282
(
1980
).
47.
E.
Martinec
and
N.
Warner
, “
Integrable Systems and supersymmetric gauge theory
,” hep-th/9509161;
E.
Martinec
and
N.
Warner
,
Nucl. Phys. B
459
,
97
(
1996
).
48.
K.
Takasaki
, “
Whitham deformation of Seiberg–Witten curves for classical gauge groups
,” hep-th/9901120;
K.
Takasaki
,
Int. J. Mod. Phys. A
15
,
3635
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.