In 1985 Mortola and Steffé conjectured a formula for the effective conductivity tensor of a checkerboard structure where the unit cell of periodicity is square and subdivided into four equal squares each having a different conductivity. In this article their conjecture is proven. The key idea is to superimpose suitably reflected potentials to obtain the solution to the dual problem. This is then related back to the original problem using a well known theorem of Keller, thereby proving the conjecture. The analysis also yields formulas relating the potentials in the four squares. Independently, Craster and Obnosov have obtained a completely different proof of the conjecture.
REFERENCES
1.
A. M.
Dykhne
, Zhurnal eksperimental’noi i teoreticheskoi fiziki/Akademiia Nauk SSSR 59, 110 (1970), English translation in Sov. Phys. JETP
32
, 63
–65
(1971
).2.
G. W. Milton, unpublished report TP/79/1, University of Sydney, Sydney, Australia.
3.
4.
H.
Ma
, B.
Zhang
, W. Y.
Tam
, and P.
Sheng
, Phys. Rev. B
61
, 962
(2000
).5.
A. K.
Gautesen
, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
48
, 393
(1988
).6.
J.
Helsing
, G.
Grimvall
, and K. D.
Bao
, J. Math. Phys.
32
, 1958
(1991
).7.
8.
G. W.
Milton
, R. C.
McPhedran
, and D. R.
McKenzie
, Appl. Phys.
25
, 23
(1981
).9.
10.
11.
12.
13.
14.
V. V. Mityushev and T. N. Zhorovina, in Boundary Value Problems, Special Functions and Fractional Calculus. Proceedings of the International Conference Dedicated to the 90th Birthday of Academician F. D. Gakhov, 16–20 February 1996 Minsk, Belarus (Belgosuniversitet, Byelorussian State Univ., Minsk, Belarus, 1996), pp. 237–243.
15.
16.
17.
18.
S. M.
Kozlov
, Usp. Mat. Nauk
44
, 79
(1989
), English translation in Russ. Math. Surv. 44(2), 91–144 (1989).19.
20.
K. Golden and S. M. Kozlov, in Homogenization, Vol. 50 of Series on Advances in Mathematics for Applied Sciences, edited by V. Berdichevsky, V. V. Zhikov, and G. Papanicolaou (World Scientific, Singapore, 1999), pp. 21–34.
21.
22.
M. N.
Miller
, J. Math. Phys. 10 2005 (1969), see erratum: J. Math. Phys.
12
, 1057
(1971
).23.
24.
N. R. Silnutzer, Ph.D. thesis, University of Pennsylvania, Philadelphia, 1972.
25.
26.
27.
S.
Torquato
, I. C.
Kim
, and D.
Cule
, J. Appl. Phys.
85
, 1560
(1999
).28.
P. Suquet and H. Moulinec, in Mathematics of Multiscale Materials, Vol. 99 of The IMA Volumes in Mathematics and its Applications, edited by K. M. Golden, R. E. Grimmett, R. D. James, G. W. Milton, and P. N. Sen (Springer-Verlag, Berlin, 1999), pp. 271–280.
29.
V. L. Berdichevskii, Variational Principles in Mechanics of Continuum Media (Nauka, Moscow, 1983), pp. 446 + 2.
30.
K. A.
Lurie
and A. V.
Cherkaev
, J. Optim. Theory Appl.
42
, 305
(1984
).31.
A. V.
Cherkaev
, K. A.
Lurie
, and G. W.
Milton
, Proc. R. Soc. London, Ser. A
438
, 519
(1992
).32.
J.
Helsing
, G. W.
Milton
, and A. B.
Movchan
, J. Mech. Phys. Solids
45
, 565
(1997
).33.
L.
Berlyand
and S. M.
Kozlov
, Arch. Ration. Mech. Anal.
118
, 95
(1992
).34.
S.
Mortola
and S.
Steffé
, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend.
78
, 77
(1985
).35.
A.
Marino
and S.
Spagnolo
, Annali della Scuola Normale Superiore di Pisa
23
, 657
(1969
).36.
37.
K. S.
Cole
, C.
luh Li
, and A. F.
Bak
, Exp. Neurol.
24
, 459
(1969
).38.
W. T. Perrins, unpublished M.Sc. thesis, University of Sydney, 1981.
39.
A. Meidell, in Mechanics of Composite Materials and Structures: Proceedings of the NATO Advanced Study Institute on Mechanics of Composite Materials and Structures, Tróia, Portugal, 12–24 July 1998, Vol. III of NATO Science Series, edited by C. A. M. Soares, C. M. M. Soares, and M. J. M. Freitas (Kluwer, Dordrecht, The Netherlands, 1998), pp. 367–379.
40.
41.
S.
Kozlov
and J.
Vucans
, C. R. Séances Acad. Sci. Série I. Mathématique
314
, 281
(1992
).42.
R. V.
Craster
and Y. V.
Obnosov
, SIAM J. Appl. Math.
61
, 1839
(2000
).43.
44.
G. Matheron, Eléments pour une théorie des milieux poreux (in French) (Elements for a Theory of Porous Media) (Masson Editeur, Masson, France, 1967), p. 168.
45.
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.