It is shown that a Lagrangian system whose Legendre transformation degenerates along a hypersurface behaves in a strange manner by jumping from time to time without any “visible cause.” In such a jump the system changes instantaneously its coordinates as well as its momenta. Necessary elements of the general theory of such systems are reported and a detailed description of a postrelativistic oscillator showing such a behavior is given.

1.
P. M. A.
Dirac
, “
Generalized Hamiltonian dynamics
,”
Can. J. Math.
2
,
129
(
1950
).
2.
V. Fock, The Theory of Space, Time and Gravitation (Pergamon, New York, 1966).
3.
C. G.
Darwin
,
Philos. Mag.
39
,
357
(
1920
).
4.
H. W.
Woodcock
and
P.
Havas
, “
Approximatively relativistic Lagrangians for classical interacting point particles
,”
Phys. Rev. D
6
,
3422
(
1972
).
5.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
6.
F.
Pugliese
and
A. M.
Vinogradov
, “
On the geometry of singular Lagrangians
,”
J. Geom. Phys.
35
,
35
(
2000
).
7.
A. M.
Vinogradov
and
B. A.
Kupershmidt
, “
The structures of Hamiltonian mechanics
,”
Russ. Math. Surv.
32
,
177
(
1977
).
8.
I. P.
Pavlotsky
and
G.
Vilasi
, “
Some peculiar properties of the relativistic oscillator in the post-Galilean approximation
,”
Physica A
214
,
68
(
1995
).
9.
F. Pugliese and A. M. Vinogradov, “Geometry of inelastic collisions” (unpublished).
10.
B. Brogliato, Nonsmooth Impact Mechanics. Models, Dynamics and Control, Lecture Notes in Control and Information Sciences Vol. 220 (Springer, London, 1996).
11.
F.
Lizzi
,
G.
Marmo
,
G.
Sparano
, and
A. M.
Vinogradov
, “
Eikonal type equations for geometrical singularities of solutions in field theory
J. Geom. Phys.
14
,
211
(
1994
).
12.
A. M. Vinogradov, “Geometric singularities of solutions of nonlinear partial differential equations,” Proceedings of Differential Geometry and its Applications, Brno, 1986, Mathematical Applications (East European Series) 27 (Reidel, Dordrecht–Boston, 1987), p. 359.
13.
T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razionale (Zanichelli, Bologna, 1927), Vol. 2, tom. 2.
14.
K.
Kamimura
, “
Singular Lagrangians and constrained Hamiltonian systems, generalized canonical formalism
,”
Nuovo Cimento Soc. Ital. Fis., B
68B
,
33
(
1982
).
15.
M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities (Springer, New York, 1973).
This content is only available via PDF.
You do not currently have access to this content.