We show that a partition function of topological twisted Yang–Mills theory is given by Seiberg–Witten invariants on a Riemannian four manifolds under the condition that the sum of the Euler number and the signature of the four manifolds vanishes. The partition function is the sum of the Euler number of instanton moduli space when it is possible to apply the vanishing theorem. Also we obtain a relation of the Euler number labeled by the instanton number k with Seiberg–Witten invariants. All calculations in this article are done without assuming duality.
REFERENCES
1.
C.
Vafa
and E.
Witten
, “A Strong coupling test of S-duality
,” Nucl. Phys. B
431
, 3
(1994
).2.
3.
4.
5.
M.
Bershadsky
, C.
Vafa
, and V.
Sadov
, “D-branes and Topological Field Theories
,” Nucl. Phys. B
463
, 420
(1996
);C.
Vafa
, “Gas of D-branes and Hagedorn Density of BPS States
,” Nucl. Phys. B
463
, 415
(1996
);M.
Bershadsky
, C.
Vafa
, and V.
Sadov
, “D Strings on D Manifolds
,” Nucl. Phys. B
463
, 398
(1996
).6.
S.
Hyun
, J.
Park
, and J-S.
Park
, “ Supersymmetric QCD and Four Manifolds; (I) the Donaldson and the Seiberg-Witten Invariants
,” hep-th/9508162;S.
Hyun
and J.-S.
Park
, “ Topological Yang-Mills Theories and Donaldson’s Polynomials
,” J. Geom. Phys.
20
, 31
(1996
).7.
S. K.
Donaldson
, “Polynomial invariants for smooth four-manifolds
,” Topology
29
, 257
(1990
);S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-manifolds (Oxford U. P., New York, 1990);
S. K.
Donaldson
, “An application of gauge theory to the topology of 4-manifolds
,” J. Diff. Geom.
18
, 269
(1983
);S. K.
Donaldson
, “Connection, cohomology, and intersection forms of 4-manifolds
,” J. Diff. Geom.
26
, 397
(1986
).8.
E.
Witten
, “Monopoles and four-manifolds
,” Math. Research Lett.
1
, 769
(1994
);E.
Witten
, “Supersymmetric Yang-Mills theory on a four manifolds
,” J. Math. Phys.
35
, 5101
(1994
);E.
Witten
, “On S-duality in abelian gauge theory,”
Selecta Mathematica
1
, 383
(1995
);E.
Witten
, hep-th/9505186.9.
E.
Witten
, “Topological quantum field theory
,” Commun. Math. Phys.
117
, 353
(1988
);E.
Witten
, “Introduction to cohomological field theories
,” Int. J. Mod. Phys. A
6
, 2273
(1991
).10.
R.
Dijkgraaf
, J.
Park
, and B.
Schroers
, “ Supersymmetric Yang-Mills Theory on a Kähler Surface
,” hep-th/9801066.11.
S.
Hyun
, J.
Park
, and J-S.
Park
, “Topological QCD
,” Nucl. Phys. B
453
, 199
(1995
).12.
J. M. F.
Labastida
and M.
Mariño
, “Non-abelian monopoles on four-manifolds
,” Nucl. Phys. B
448
, 373
(1995
)M.
Alvarez
and J. M. F.
Labastida
, “Topological matter in four dimensions
,” Nucl. Phys. B
437
, 356
(1995
);J. M. F.
Labastida
and M.
Mariño
, “A topological lagrangian for monopoles on four-manifolds
,” Phys. Lett. B
351
, 146
(1995
).13.
R.
Dijkgraaf
and G.
Moore
, “Balanced topological field theories
,” Commun. Math. Phys.
185
, 411
(1997
);J. M. F.
Labastida
and C.
Lozano
, “Mathai-Quillen formulation of twisted supersymmetric gauge theories in four dimensions
,” Nucl. Phys. B
502
, 741
(1997
).14.
M.
Mariño
, G.
Moore
, and G.
Peradze
, “Superconformal invariance and the geography of four-manifolds
,” Commun. Math. Phys.
205
, 691
(1999
).15.
M. Furuta, “Monopole equation and 11/8 conjecture” (preprint).
16.
Private discussion with Furuta Mikio.
17.
A.
Sako
, “Reducible connections in massless topological QCD and 4-manifolds
,” Nucl. Phys. B
522
, 373
(1998
).
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.