Motivated by the search for solutions of the quantum Yang–Baxter equation, an algebraic theory of quantum stochastic product integrals is developed. The product integrators are formal power series in an indeterminate h whose coefficients are elements of the Lie algebra ℒ labelling the usual integrators of a many-dimensional quantum stochastic calculus. The product integrals are also formal power series in h, whose coefficients are finite iterated additive stochastic integrals which act on the exponential domain in the Fock space of the calculus and which represent elements of the universal enveloping algebra 𝒰 of ℒ. They obey a multiplication rule suggested by the quantum Itô product formula, and are characterized among all such formal power series by a grouplike property.

1.
V.
Volterra
, “
Sulle equazioni differenziali lineari
,”
Rend. Acad. Lincei (Series 4)
3
,
393
396
(
1887
).
2.
G.
Péano
, “
Integration par series des equations differentiales lineaires
,”
Math. Ann.
32
,
450
456
(
1888
).
3.
R. D.
Gill
and
S.
Johansen
, “
A survey of product integration with a view to application in survival analysis
,”
Ann. Stat.
18
,
1501
1555
(
1990
).
4.
R. M. Dudley and R. Norvaiša, “An introduction to p-variation and Young integrals,” MaPhySto preprint, 1998.
5.
R. L.
Hudson
and
K. R.
Parthasarathy
, “
Quantum Itô formula and stochastic evolutions
,”
Commun. Math. Phys.
93
,
301
323
(
1984
).
6.
R. L. Hudson and P. D. F. Ion, The Feynman–Kac formula for a quantum mechanical Wiener process, in Random Fields, Proceedings, Esztergom, 1979 (North-Holland, Amsterdam, 1981), pp. 551–568.
7.
R. L.
Hudson
,
P. D. F.
Ion
, and
K. R.
Parthasarathy
, “
Time-orthogonal unitary dilations and noncommutative Feynman-Kac formulas
,”
Commun. Math. Phys.
83
,
261
280
(
1982
).
8.
R. L. Hudson and K. R. Parthasarathy, Construction of quantum diffusions, in Quantum Probability and Applications I, edited by L. Accardi and W. von Waldenfels, Springer Lecture Notes in Mathematics, Vol. 1055 (Springer-Verlag, Berlin, 1984), pp. 173–198.
9.
A. S. Holevo, Time ordered exponentials in quantum stochastic calculus, in Quantum Probability 7, edited by L. Accardi and W. von Waldenfels (World Scientific, Singapore, 1992), pp. 175–182.
10.
A. S.
Holevo
, “
Exponential formulas in quantum stochastic calculus
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
126A
,
375
389
(
1996
).
11.
A. S.
Holevo
, “
An anologue of the Itô decomposition for multiplicative processes with values in a Lie group
,”
Sankhya A
53
,
158
161
(
1991
).
12.
R. L.
Hudson
and
S.
Pulmannová
, “
Chaotic expansion of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus
,”
Proc. London Math. Soc.
77
,
462
480
(
1998
).
13.
V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994).
14.
V. G.
Drinfeld
, “
On constant quasi-classical solutions of the Yang–Baxter quantum equation
,”
Sov. Math. Dok.
28
,
667
671
(
1983
).
15.
V. P.
Belavkin
, “
A new form and  * -algebraic structure of quantum stochastic integrals
,”
Rend. Sem. Mat. Fis. Milano
58
,
177
193
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.