A generalization of super-Lie algebras is presented. It is then shown that all known examples of fractional supersymmetry can be understood in this formulation. However, the incorporation of three-dimensional fractional supersymmetry in this framework needs some care. The proposed solutions lead naturally to a formulation of a fractional supersymmetry starting from any representation 𝒟 of any Lie algebra g. This involves taking the Fth-roots of 𝒟 in an appropriate sense. A fractional supersymmetry in any space–time dimension is then possible. This formalism finally leads to an infinite dimensional extension of g, reducing to the centerless Virasoro algebra when g=sl(2,R).

1.
S.
Coleman
and
J.
Mandula
,
Phys. Rev.
159
,
1251
(
1967
).
2.
R.
Haag
,
J. T.
Lopuszanski
, and
M. F.
Sohnius
,
Nucl. Phys. B
88
,
257
(
1975
).
3.
R.
Kerner
,
J. Math. Phys.
33
,
403
(
1992
);
R.
Kerner
,
Class. Quantum Grav.
9
,
S137
(
1992
).
4.
L. A.
Wills Toro
,
J. Math. Phys.
36
,
2085
(
1995
).
5.
C.
Ahn
,
D.
Bernard
, and
A.
Leclair
,
Nucl. Phys. B
346
,
409
(
1990
).
6.
J. L.
Matheus-Valle
and
Marco A. R.
Monteiro
,
Mod. Phys. Lett. A
7
,
3023
(
1992
);
S.
Durand
,
Mod. Phys. Lett. A
8
,
2323
(
1993
);
N.
Debergh
,
J. Phys. A
26
,
7219
(
1993
);
N.
Mohammedi
,
Mod. Phys. Lett. A
10
,
1287
(
1995
);
L. P.
Colatto
and
J. L.
Matheus-Valle
,
J. Math. Phys.
37
,
6121
(
1996
).
7.
N.
Fleury
and
M.
Rausch de Traubenberg
,
Mod. Phys. Lett. A
11
,
899
(
1996
).
8.
J. A.
de Azcàrraga
and
A. J.
Macfarlane
,
J. Math. Phys.
37
,
1115
(
1996
).
9.
A.
Perez
,
M.
Rausch de Traubenberg
, and
P.
Simon
,
Nucl. Phys. B
482
,
325
(
1996
);
M.
Rausch de Traubenberg
and
P.
Simon
,
Nucl. Phys. B
517
,
485
(
1998
).
10.
J. L.
Matheus-Valle
and
Marco A. R.
Monteiro
,
Phys. Lett. B
300
,
66
(
1993
);
E. H.
Saidi
,
M. B.
Sedra
, and
J.
Zerouaoui
,
Class. Quantum Grav.
12
,
1567
(
1995
);
E. H.
Saidi
,
M. B.
Sedra
, and
J.
Zerouaoui
,
Class. Quantum Grav.
12
,
2705
(
1995
).
11.
S.
Durand
,
Mod. Phys. Lett. A
7
,
2905
(
1992
).
12.
M.
Rausch de Traubenberg
and
M.
Slupinski
,
Mod. Phys. Lett. A
12
,
3051
(
1997
).
13.
M.
Rausch de Traubenberg
, hep-th/9802141, Habilitation Thesis (in French).
14.
J.
Leinaas
and
J.
Myrheim
,
Nuovo Cimento Soc. Ital. Fis., B
37
,
1
(
1977
).
15.
B.
Binegar
,
J. Math. Phys.
23
,
1511
(
1982
).
16.
R.
Jackiw
and
V. P.
Nair
,
Phys. Rev. D
43
,
1933
(
1991
).
17.
M. S.
Plyushchay
,
Phys. Lett.
262
,
71
(
1991
);
M. S.
Plyushchay
,
Nucl. Phys. B
362
,
54
(
1991
);
M. S.
Plyushchay
,
Phys. Lett. B
273
,
250
(
1991
);
J. L.
Cortes
and
M. S.
Plyushchay
,
Int. J. Mod. Phys. A
11
,
3331
(
1996
).
18.
N.
Roby
,
C. R. Acad. Sci. Paris
268
,
484
(
1969
);
Ph.
Revoy
,
C. R. Acad. Sci. Paris
284
,
985
(
1977
).
19.
Ph.
Revoy
,
J. Alg.
74
,
268
(
1977
).
20.
Ph.
Revoy
,
Adv. Appl. Cliff. Alg.
4
,
51
(
1993
).
21.
N.
Fleury
and
M.
Rausch de Traubenberg
,
J. Math. Phys.
33
,
3356
(
1992
);
N.
Fleury
and
M.
Rausch de Traubenberg
,
Adv. Appl. Cliff. Alg.
4
,
123
(
1994
).
22.
L.
Baulieu
and
E. G.
Floratos
,
Phys. Lett. B
258
,
171
(
1991
);
M.
Rausch de Traubenberg
,
Adv. Appl. Cliff. Alg.
4
,
131
(
1994
).
23.
B. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).
24.
V. G. Kac and A. K. Raina, in Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (World Scientific, Singapore, 1987).
25.
V. G. Kac, Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 1990).
26.
A. M. Polyakov, Gauge Fields and Strings (Harwood, Chur, 1987), Vol. 3.
This content is only available via PDF.
You do not currently have access to this content.