In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two “first pieces of a conceptual revolution.” The general requirements on the mathematics and some specific developments toward the construction of such a framework are discussed. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher-dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turned out to be related, suggesting an intriguing general picture of general relativistic quantum physics.

1.
C.
Rovelli
and
L.
Smolin
, “
Discreteness of area and volume in quantum gravity
,”
Nucl. Phys. B
442
,
593
(
1995
);
C.
Rovelli
and
L.
Smolin
,
Nucl. Phys. B
456
,
734
(
1995
).
2.
C.
Rovelli
and
L.
Smolin
, “
Spin networks and quantum gravity
,”
Phys. Rev. D
52
,
5743
(
1995
).
3.
M. F.
Atiyah
, “
Topological quantum field theories
,”
Publ. Math. Inst. Hautes Etudes Sci., Paris
68
,
175
(
1989
);
The Geometry and Physics of Knots, Accademia Nazionale dei Lincei (Cambridge University Press, Cambridge, 1990).
E.
Witten
,
Commun. Math. Phys.
117
,
353
(
1988
).
4.
V. G.
Turaev
and
O. Y.
Viro
, “
State sum invariants of 3-manifolds and quantum6j symbols
,”
Topology
31
,
865
(
1992
).
V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds (de Gruyter, New York, 1994).
5.
V. Turaev, “Quantum invariants of 3-manifolds and a glimpse of shadow topology,” in Quantum Groups, Springer Lecture Notes in Mathematics 1510 (Springer-Verlag, New York, 1992) pp. 363–366;
Quantum Invariants of Knots and 3-Manifolds (de Gruyter, New York, 1994).
6.
H.
Ooguri
, “
Topological lattice models in four dimensions
,”
Mod. Phys. Lett. A
7
,
2799
(
1992
).
7.
L.
Crane
and
D.
Yetter
, “A categorical construction of 4-D topological quantum field theories,” in Quantum Topology, edited by L. Kaufmann and R. Baadhio (World Scientific, Singapore, 1993), hep-th/9301062.
8.
F.
David
,
Nucl. Phys. B
257
,
45
(
1985
);
J.
Ambjorn
,
B.
Durhuus
, and
J.
Frölich
,
Nucl. Phys. B
257
,
433
(
1985
);
V. A.
Kazakov
,
I. K.
Kostov
, and
A. A.
Migdal
,
Phys. Lett.
157
,
295
(
1985
);
D. V.
Boulatov
,
V. A.
Kazakov
,
I. K.
Kostov
, and
A. A.
Migdal
,
Nucl. Phys. B
275
,
641
(
1986
);
M.
Douglas
and
S.
Shenker
,
Nucl. Phys. B
335
,
635
(
1990
);
D.
Gross
and
A.
Migdal
,
Phys. Rev. Lett.
64
,
635
(
1990
);
E.
Brezin
and
V. A.
Kazakov
,
Phys. Lett. B
236
,
144
(
1990
).
9.
D. V.
Boulatov
,
Mod. Phys. Lett. A
7
,
1629
(
1992
).
10.
M. P.
Reisenberger
, “
A lattice worldsheet sum for 4-d Euclidean general relativity
,” gr-qc/9711052.
11.
J. W.
Barrett
and
L.
Crane
, “
Relativistic spin networks and quantum gravity
,”
J. Math. Phys.
39
,
3296
(
1998
).
12.
F.
Markopoulou
and
I.
Smolin
,
Phys. Rev. D
58
,
084032
(
1998
);
I.
Smolin
, hep-th/9001022,
I.
Smolin
, hep-th/9808192;
R.
De Pietri
, “Canonical ‘loop’ quantum gravity and spin foam models,” to appear in the Proceedings of the XXIIIth Congress of the Italian Society for General Relativity and Gravitational Physics (SIGRAV) 1998, gr-qc/9903076;
J. W.
Barrett
and
L.
Crane
, “
A Lorentzian signature model for quantum general relativity
,” gr-qc/9904025;
J.
Iwasaki
, “
A surface theoretic model for quantum gravity
,” gr-qc/9903122.
13.
C.
Rovelli
, “
Quantum gravity as a ‘sum over surfaces’
,”
Nucl. Phys. B (Proc. Suppl.)
57
,
28
(
1997
);
M.
Reisenberger
and
C.
Rovelli
, “
 ‘Sum over surfaces’ form of loop quantum gravity
,”
Phys. Rev. D
56
,
3490
(
1997
);
C.
Rovelli
, “
The projector on physical states in loop quantum gravity
,”
Phys. Rev. D
59
,
104
015
(
1999
).
14.
J.
Baez
, “
Spin foam models
,”
Class. Quantum Grav.
15
,
1827
(
1998
).
15.
C.
Rovelli
, “Strings, loops and others: A critical survey of the present approaches to quantum gravity,” in Gravitation and Relativity at the Turn of the Millennium, Proceedings of the GR-15 Conference, IUCAA, Pune, India December, 1997 (Inter University center for Astronomy and Astrophysics, Pune, 1998), gr-qc/9803024.
16.
C.
Rovelli
, “
What is observable in classical and quantum gravity?
Class. Quantum Grav.
8
,
297
(
1991
).
17.
C. Rovelli, “Halfway through the woods: Contemporary research on space and time,” in The Cosmos of Science, edited by J. Earman and J. D. Norton (University of Pittsburgh Press and Universitäts-Verlag Konstanz, Pittsburgh and Konstanz, 1997).
18.
C.
Rovelli
, “Quantum spacetime: what do we know?,” in Physics Meets Philosophy at the Planck Scale, edited by C. Callender and N. Hugget (Cambridge University Press, Cambridge, in press), gr-qc/9903045.
19.
C.
Rovelli
, “
Time in quantum gravity: a hypothesis
,”
Phys. Rev. D
43
,
442
(
1991
);
C.
Rovelli
, “
Quantum mechanics without time: a model
,”
Phys. Rev. D
42
,
2638
(
1990
).
20.
C.
Rovelli
, “
Statistical mechanics of gravity and thermodynamical origin of time
,”
Class. Quantum Grav.
10
,
1549
(
1993
);
C.
Rovelli
, “
The statistical state of the universe
,”
Class. Quantum Grav.
10
,
1567
(
1993
).
21.
A.
Connes
and
C.
Rovelli
, “
Von Neumann algebra automorphisms and time versus thermodynamics relation in general covariant quantum theories
,”
Class. Quantum Grav.
11
,
2899
(
1994
).
22.
C.
Rovelli
, “
Relational quantum mechanics
,”
Int. J. Theor. Phys.
35
,
1637
(
1996
).
23.
R.
Haag
and
D.
Kastler
, “
An algebraic approach to quantum field theory
,”
J. Math. Phys.
5
,
848
(
1964
);
R. Haag, Local Quantum Physics (Springer-Verlag, Berlin, 1992).
24.
J. B.
Hartle
, “Spacetime quantum mechanics and the quantum mechanics of spacetime,” in Gravitation and Quantizations, Proceedings of the 1992 Les Houches Summer School, edited by B. Julia and J. Zinn-Justin, Les Houches Summer School Proceedings (North Holland, Amsterdam, 1995), Vol. LVII, gr-qc/9304006.
25.
C. J.
Isham
, “
Quantum logic and the histories approach to quantum theory
,”
J. Math. Phys.
35
,
2157
(
1994
),
C. J.
Isham
, gr-qc/9308006;
C. J. Isham and J. Butterfield, “Some possible roles for Topos theory in quantum theory and quantum gravity,” to appear in Found. Phys. .
26.
M. Tomita, V-th Functional Analysis, Symposium of the Math Society of Japan, Sendai, 1967;
M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications, Springer Lecture Notes 128 (Springer-Verlag, Berlin, 1970).
27.
A.
Connes
, “
Une classification des facteurs de type III
,”
Ann. Sci. Ecole Norm. Sup.
6
,
133
(
1973
).
28.
J. Wheeler, in Battelle Rencontres 1967, edited by C. DeWitt and J. A. Wheeler (Benjamin, New York, 1968);
B.
DeWitt
,
Phys. Rev.
160
,
1113
(
1967
).
29.
S. W. Hawking, “The path-integral approach to quantum gravity,” in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979).
30.
J. B.
Hartle
and
S. W.
Hawking
,
Phys. Rev. D
28
,
2960
(
1983
).
31.
S.
Mandelstam
,
Ann. Phys. (N.Y.)
19
,
1
(
1962
);
A. M.
Polyakov
,
Phys. Lett.
B82
,
247
(
1979
);
A. M.
Polyakov
,
Nucl. Phys. B
164
,
171
(
1979
).
Y. M.
Makeenko
and
A. A.
Migdal
,
Phys. Lett.
B88
,
135
(
1979
).
Y.
Nambu
,
Phys. Lett.
B80
,
372
(
1979
);
F.
Gliozzi
,
T.
Regge
, and
M. A.
Virasoro
,
Phys. Lett.
B81
,
178
(
1979
);
M.
Virasoro
,
Phys. Lett.
B82
,
436
(
1979
);
A.
Jevicki
and
B.
Sakita
,
Phys. Rev. D
22
,
467
(
1980
);
B. Sakita, “Collective field theory,” in Field Theory in Elementary Particles, edited by B. Kursunoglu and A. Perlmutter (Plenum, New York, 1983).
K.
Wilson
,
Phys. Rev. D
10
,
247
(
1974
);
J.
Kogut
and
L.
Suskind
,
Phys. Rev. D
11
,
395
(
1975
);
L. Susskind, “Coarse grained quantum chromodynamics,” in Les IIouches XXIX Weak and Electromagnetic Interactions at High Energy, edited by R. Balian and C. H. Llewellyn-Smith (North Holland, Amsterdam, 1976).
32.
C.
Rovelli
, “
Loop quantum gravity
,” in Living Reviews in Relativity, electronic journal, http://www.livingreviews.org, gr-qc/9710008.
33.
C.
Rovelli
and
M.
Gaul
, to appear in the Proceedings of the XXXV Karpacz Winter School on Theoretical Physics: From Cosmology to Quantum Gravity, Polanica, Poland, 2–12 February 1999, gr-qc/9910079.
34.
A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore, 1991).
35.
C.
Rovelli
, “
Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: A report
,”
Class. Quantum Grav.
8
,
1613
(
1991
).
36.
F.
Barbero
, “
Real Ashtekar variables for Lorentzian signature space–times
,”
Phys. Rev. D
51
,
5507
(
1995
);
F.
Barbero
, “
From Euclidean to Lorentzian general relativity: The real way
,”
Phys. Rev. D
54
,
1492
(
1996
).
37.
A.
Ashtekar
and
C. J.
Isham
, “
Representations of the holonomy algebra of gravity and non-Abelian gauge theories
,”
Class. Quantum Grav.
9
,
1069
(
1992
).
A.
Ashtekar
, “Mathematical problems of non-perturbative quantum general relativity,” in Les Houches Summer School on Gravitation and Quantizations, edited by J. Zinn-Justin and B. Julia, Les Houches, France, 1992 (North-Holland, Amsterdam, 1995), gr-qc/9302024.
38.
J. Lewandowski, to appear in Ref. 33.
39.
C.
Rovelli
, “
Area is the length of Ashtekar’s triad field
,”
Phys. Rev. D
47
,
1703
(
1993
).
40.
C.
Rovelli
, “
A generally covariant quantum field theory and a prediction on quantum measurements of geometry
,”
Nucl. Phys. B
405
,
797
(
1993
).
41.
L.
Smolin
, “
Finite, diffeomorphism invariant observables in quantum gravity
,”
Phys. Rev. D
49
,
4028
(
1994
).
42.
L.
Smolin
, “
The future of spin networks
,” gr-qc/9702030.
43.
R.
De Pietri
and
C.
Rovelli
, “
Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity
,”
Phys. Rev. D
54
,
2664
(
1996
).
44.
N.
Grott
and
C.
Rovelli
, “
Moduli spaces structure of knots with intersections
,”
J. Math. Phys.
37
,
3014
(
1996
).
45.
J.
Zapata
,
J. Math. Phys.
38
,
5663
(
1997
);
J.
Zapata
,
Gen. Relativ. Gravit.
30
,
1229
(
1998
).
46.
T.
Thiemann
, “
Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity
,”
Phys. Lett. B
380
,
257
(
1996
);
T.
Thiemann
, “
Quantum spin dynamics (QSD)
,”
Class. Quantum Grav.
15
,
839
(
1998
).
47.
C.
Rovelli
and
L.
Smolin
, “
Loop representation of quantum general relativity
,”
Nucl. Phys. B
331
,
80
(
1990
).
48.
C.
Rovelli
, “
Outline of a general covariant quantum field theory and a quantum theory of gravity
,”
J. Math. Phys.
36
,
6529
(
1996
).
49.
R.
Borissov
,
R.
DePietri
, and
C.
Rovelli
, “
Matrix elements of Thiemann Hamiltonian
,”
Class. Quantum Grav.
14
,
2793
(
1997
).
50.
C.
Rovelli
and
L.
Smolin
, “
The physical Hamiltonian in nonperturbative quantum gravity
,”
Phys. Rev. Lett.
72
,
446
(
1994
).
51.
C.
Rovelli
, “
Black hole entropy from loop quantum gravity
,”
Phys. Rev. Lett.
14
,
3288
(
1996
);
C.
Rovelli
, “
Loop quantum gravity and black hole physics
,”
Helv. Phys. Acta
69
,
582
(
1996
);
K.
Krasnov
, “
Geometrical entropy from loop quantum gravity
,”
Phys. Rev. D
55
,
3305
(
1997
).
A.
Ashtekar
,
J.
Baez
,
A.
Corichi
, and
K.
Krasnov
, “
Quantum geometry and black hole entropy
,”
Phys. Rev. Lett.
80
,
904
(
1998
).
52.
E.
Witten
, “
(2+1) dimensional gravity as an exactly soluble system
,”
Nucl. Phys. B
311
,
46
(
1988
).
53.
S. Carlip, Quantum Gravity in 2+1 Dimensions (Cambridge University Press, Cambridge, 1998).
54.
A.
Ashtekar
,
V.
Husain
,
J.
Samuel
,
C.
Rovelli
, and
L.
Smolin
, “
2+1 quantum gravity as a toy model for the 3+1 theory
,”
Class. Quantum Grav.
6
,
L185
(
1989
).
55.
L. Kauffman and S. Lins, Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds (Princeton University Press, Princeton, 1994).
56.
L. Crane and D. Yetter, “On algebraic structure implicit in topological quantum field theory,” Kansas preprint, 1994;
D.
Yetter
, “
State sum invariants of 3-manifolds associated to Artinian tortile categories
,”
Topol. Appl.
58
,
47
(
1994
).
57.
F.
Markopoulou
, “
Dual formulation of spin network evolution
,” gr-qc/9704013.
58.
G. Ponzano and T. Regge, in Spectroscopy and Group Theoretical Methods in Physics, edited by F. Bloch (North-Holland, Amsterdam, 1968).
59.
G.
Horowitz
, “
Exactly soluble diffeomorphism invariant theories
,”
Commun. Math. Phys.
125
,
417
(
1989
);
M.
Blau
and
G.
Thompson
, “
Topological gauge theories of antisymmetric tensor fields
,”
Phys. Lett. B
28
,
64
(
1989
);
J.
Baez
, “
Four dimensionalBF theory as a topological quantum field theory
,”
Lett. Math. Phys.
38
,
129
(
1996
);
A.
Cattaneo
,
P.
Cotta-Ramusino
,
J.
Fröhlich
, and
M.
Martellini
, “
Topological BF theories in 3 and 4 dimensions
,”
J. Math. Phys.
36
,
6137
(
1995
).
60.
C.
Rovelli
, “
Basis of the Ponzano–Regge–Turaev–Viro–Ooguri quantum gravity model is the loop representation basis
,”
Phys. Rev. D
48
,
2702
(
1993
).
61.
T. J.
Foxon
, “
Spin networks, Turaev–Viro theory and the loop representation
,”
Class. Quantum Grav.
12
,
951
(
1995
).
62.
L.
Crane
,
L.
Kauffman
, and
D.
Yetter
, “
State sum invariants of 4-manifolds
,”
J. Knot Theory Ramifications
6
,
177
(
1997
).
63.
R. De
Pietri
and
L.
Freidel
,
Class. Quantum Grav.
16
,
2187
(
1999
);
M.
Reisenberger
,
Class. Quantum Grav.
16
,
1357
(
1999
).
64.
M.
Reisenberger
, “Worldsheet formulations of gauge theories and gravity,” talk given at the 7th Marcel Grossmann Meeting Stanford, July 1994, gr-qc/9412035.
65.
A.
Barbieri
,
Nucl. Phys. B
518
,
714
(
1998
);
L.
Freidel
and
K.
Krasnov
,
Class. Quantum Grav.
16
,
351
(
1999
);
J.
Baez
and
J.
Barrett
, “
The quantum tetrahedron in 3 and 4 dimensions
,” gr-qc/9903060.
66.
J. W.
Barrett
and
R.
Williams
, “
The asymptotic of an amplitude for the 4-simplex
,” gr-qc/9809032.
67.
L.
Freidel
and
K.
Krasnov
, “
Spin foam models and the classical action principle
,”
Adv. Theor. Math. Phys.
2
,
1221
(
1998
).
68.
R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, “Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space,” Nucl. Phys. (to appear).
69.
J. Baez, “Strings, loops, knots and gauge fields,” in Knots and Quantum Gravity, edited by J. Baez (Oxford University Press, Oxford, 1994).
70.
J.
Iwasaki
, “
A definition of the Ponzano–Regge quantum gravity model in terms of surfaces
,”
J. Math. Phys.
36
,
6288
(
1995
).
71.
J.
Baez
, “An introduction to spin foam models of BF theory and quantum gravity,” to appear in Geometry and Quantum Physics, Lecture Notes in Physics, edited by H. Gausterer and H. Grosse (Springer-Verlag, Berlin, in press), gr-qc/9905087.
72.
T.
Thiemann
, “
Kinematical Hilbert spaces for fermionic and Higgs quantum field theories
,”
Class. Quantum Grav.
15
,
1487
(
1998
).
73.
L.
Smolin
, “
Towards a background independent approach to M theory
,” hep-th/9808192;
L.
Smolin
, “
Strings as perturbations of evolving spin-networks
,” hep-th/9801022.
This content is only available via PDF.
You do not currently have access to this content.