We propose a simple oscillator model for the reduced three-body problem to understand the stability of orbits with small eccentricity of a light planet. It models the main short-time features for small mass ratios of the other bodies. These results are confronted with the exact mathematical analysis for stability for all times, and with computer simulation results for bigger mass ratios, where chaotic features emerge.

1.
M.
Gutzwiller
,
Rev. Mod. Phys.
70
,
589
(
1998
).
2.
M. Hénon, Generating Families in the Restricted Three-Body Problem (Springer, Berlin, 1997).
3.
V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic, New York, 1967).
4.
Lj.
Milanović
,
H. A.
Posch
, and
W.
Thirring
,
Phys. Rev. E
57
,
2763
(
1998
).
5.
J.
Laskar
,
Icarus
88
,
266
(
1990
).
6.
J.
Laskar
and
Ph.
Robutel
,
Nature (London)
361
,
608
(
1993
).
7.
N. W.
Evans
and
S.
Tabachnik
,
Nature (London)
399
,
41
(
1999
).
8.
M.
Mayer
and
D. A.
Queloz
,
Nature (London)
378
,
355
(
1995
).
9.
A. C.
Cameron
,
K.
Horne
,
A.
Penny
, and
D.
James
,
Nature (London)
402
,
751
(
1999
).
10.
J. Moser, Stable and Random Motions in Dynamical Systems (Princeton University Press, Princeton, 1973).
11.
W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories (Springer, New York, 1997).
12.
G. Gallavotti, The Elements of Mechanics (Springer, New York, 1983).
13.
V.
Arnold
,
Dokl. Akad. Nauk
142
,
758
(
1962
).
14.
M.
Hénon
,
Bull. Astron. Soc. India
3
,
49
(
1966
).
15.
A.
Celletti
and
L.
Chierchia
,
Planet. Space Sci.
46
,
1433
(
1998
).
16.
Z.
Xia
,
Ann. Math.
135
,
411
(
1992
).
17.
K.
Wodnar
,
Sitzungsber. der Österr. Akad. Wiss. Abt. II, Mathematische, Physikalische und Technische Wissenschaften
202
,
133
(
1993
).
18.
R.
Dvorak
and
Y. S.
Sun
,
Celest. Mech. Dyn. Astron.
67
,
87
(
1997
).
19.
W. Thirring, A Course in Mathematical Physics Vol. IV: Quantum Mechanics of Large Systems (Springer, New York, 1982).
20.
G. D.
Birkhoff
,
Rend. Circ. Mat. Palermo
39
,
1
(
1915
);
Collected Mathematical Papers (American Mathematical Society, New York, 1950), Vol. 1, p. 628.
21.
H. J. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste (Gauthier-Villars, Paris, 1892, 1893, 1899), Vols. 1–3;
reprinted by Librairie Albert Blanchard (1987).
22.
F. Diacu and Ph. Holmes, Celestial Encounters: The Origin of Chaos and Stability (Princeton University Press, Princeton, 1996).
23.
The Dynamical Behaviour of our Planetary System, edited by R. Dvorak and J. Henrard (Kluwer, Dordrecht, 1997).
This content is only available via PDF.
You do not currently have access to this content.