A method for representing probabilistic aspects of quantum systems by means of a density function on the space of pure quantum states is introduced. In particular, a maximum entropy argument allows us to obtain a natural density function that only reflects the information provided by the density matrix. This result is applied to derive the Shannon entropy of a quantum state. The information theoretic quantum entropy thereby obtained is shown to have the desired concavity property, and to differ from the conventional von Neumann entropy. This is illustrated explicitly for a two-state system.
REFERENCES
1.
J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932), translated into English by R. T. Beyer (Princeton University Press, Princeton, 1955).
2.
L. P. Hughston, in Twistor Theory, edited by S. Huggett (Marcel Dekker, New York, 1995);
A. Ashtekar and T. A. Schilling, in On Einstein’s Path, edited by A. Harvey (Springer-Verlag, Berlin, 1998).
3.
D. C.
Brody
and L. P.
Hughston
, Proc. R. Soc. London, Ser. A
455
, 1683
(1999
).4.
5.
6.
R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970).
7.
8.
C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976);
A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North–Holland, Amsterdam, 1982).
9.
S. L.
Braunstein
and C. M.
Caves
, Phys. Rev. Lett.
72
, 3439
(1994
);D. C.
Brody
and L. P.
Hughston
, Phys. Rev. Lett.
77
, 2581
(1996
).
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.