It is usually believed that a function φ(t) whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component ωmax. This is, in fact, not the case, as Aharonov, Berry, and others drastically demonstrated with explicit counterexamples, so-called superoscillations. It has been claimed that even the recording of an entire Beethoven symphony can occur as part of a signal with a 1 Hz bandwidth. Bandlimited functions also occur as ultraviolet regularized fields. Their superoscillations have been suggested, for example, to resolve the trans-Planckian frequencies problem of black hole radiation. Here, we give an exact proof for generic superoscillations. Namely, we show that for every fixed bandwidth there exist functions that pass through any finite number of arbitrarily prespecified points. Further, we show that, in spite of the presence of superoscillations, the behavior of bandlimited functions can be characterized reliably, namely through an uncertainty relation: The standard deviation ΔT of samples φ(tn) taken at the Nyquist rate obeys ΔT⩾1/4ωmax. This uncertainty relation generalizes to variable bandwidths. For ultraviolet regularized fields we identify the bandwidth as the in general spatially variable finite local density of degrees of freedom.

1.
Y.
Aharonov
,
J.
Anandan
,
S.
Popescu
, and
L.
Vaidman
,
Phys. Rev. Lett.
64
,
2965
(
1990
).
2.
M. V. Berry, in Proceedings of the International Conference on Fundamental Aspects of Quantum Theory, Columbia, SC, 10–12 December 1992, edited by J. S. Anandan and J. L. Safko (World Scientific, Singapore, 1995).
3.
G.
’t Hooft
,
Nucl. Phys. B
256
,
727
(
1985
).
4.
T.
Jacobsen
,
Phys. Rev. D
44
,
1731
(
1991
).
5.
R.
Brout
,
C.
Gabriel
,
M.
Lubo
, and
P.
Spindel
,
Phys. Rev. D
59
,
044005
(
1999
).
6.
R.
Brout
,
S.
Massar
,
R.
Parentani
, and
P.
Spindel
,
Phys. Rev. D
52
,
4559
(
1995
).
7.
W. G.
Unruh
,
Phys. Rev. Lett.
21
,
1351
(
1981
).
8.
W. G.
Unruh
,
Phys. Rev. D
44
,
1731
(
1991
).
9.
H.
Rosu
,
Nuovo Cimento Soc. Ital. Fis., B
112
,
131
(
1997
).
10.
B.
Reznik
,
Phys. Rev. D
55
,
2152
(
1997
).
11.
M. V.
Berry
,
J. Phys. A
27
,
L391
(
1994
).
12.
Y.
Aharonov
,
B.
Reznik
, and
A.
Stern
,
Phys. Rev. Lett.
81
,
2190
(
1998
).
13.
A.
Kempf
, preprint UFIFT-HEP-99-04, hep-th/9905114.
14.
W.
Qiao
,
J. Phys. A
29
,
2257
(
1996
).
15.
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, 1993).
16.
C. E. Shannon, The Mathematical Theory of Information (republished by Univ. of Illinois Press, Urbana and Chicago, 1998).
17.
R. J. Marks, Introduction to Shannon Sampling and Interpolation Theory (Springer-Verlag, Heidelberg, 1991).
18.
L. Cohen, Time–Frequency Analysis (Englewood Cliffs, New Jersey, 1995).
19.
I.
Daubechies
,
IEEE Trans. Inf. Theory
36
,
961
(
1990
).
20.
J. R.
Klauder
,
Proc. SPIE
3723
,
44
(
1999
).
21.
A. Kempf, preprint UFIFT-HEP-99-10.
22.
L. J.
Garay
,
Int. J. Mod. Phys. A
10
,
145
(
1995
).
23.
E.
Witten
,
Phys. Today
49
,
24
(
1996
).
24.
R. J.
Adler
and
D. I.
Santiago
, gr-qc/9904026.
25.
S.
de Haro
,
J. High Energy Phys.
9810
,
23
(
1998
).
26.
A.
Kempf
,
J. Math. Phys.
35
,
4483
(
1994
).
27.
A.
Kempf
,
J. Math. Phys.
38
,
1347
(
1997
).
28.
A.
Kempf
,
G.
Mangano
, and
R. B.
Mann
,
Phys. Rev. D
52
,
1108
(
1995
).
29.
M.
Lubo
, preprint UMH-MG-9904, hep-th/9911191.
30.
A.
Kempf
, UFIFT-HEP-98-30, hep-th/9810215, to appear in Proceedings of the “36th Course: From the Planck Length to the Hubble Radius,”
Erice, Italy
, 29 August–7 September
1998
.
This content is only available via PDF.
You do not currently have access to this content.