This paper deals with a general method for the reduction of quantum systems with symmetry. For a Riemannian manifold M admitting a compact Lie group G as an isometry group, the quotient space Q=M/G is not a smooth manifold in general but stratified into a collection of smooth manifolds of various dimensions. If the action of the compact group G is free, M is made into a principal fiber bundle with structure group G. In this case, reduced quantum systems are set up as quantum systems on the associated vector bundles over Q=M/G. This idea of reduction fails, if the action of G on M is not free. However, the Peter–Weyl theorem works well for reducing quantum systems on M. When applied to the space of wave functions on M, the Peter–Weyl theorem provides the decomposition of the space of wave functions into spaces of equivariant functions on M, which are interpreted as Hilbert spaces for reduced quantum systems on Q. The concept of connection on a principal fiber bundle is generalized to be defined well on the stratified manifold M. Then the reduced Laplacian is well defined as a self-adjoint operator with the boundary conditions on singular sets of lower dimensions. Application to quantum molecular mechanics is also discussed in detail. In fact, the reduction of quantum systems studied in this paper stems from molecular mechanics. If one wishes to consider the molecule which is allowed to lie in a line when it is in motion, the reduction method presented in this paper works well.

1.
J.
Marsden
and
A.
Weinsten
,
Rep. Math. Phys.
5
,
121
(
1974
).
2.
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed. (Benjamin/Cummings, Reading, MA, 1978).
3.
A
,
Guichardet
,
Ann. Inst. Henri Poincare
40
,
329
(
1984
).
4.
T.
Iwai
,
Ann. Inst. Henri Poincare
47
,
199
(
1987
).
5.
T.
Iwai
,
J. Phys. A
31
,
3849
(
1998
).
6.
T.
Iwai
,
J. Math. Phys.
28
,
964
(
1987
).
7.
T.
Iwai
,
J. Math. Phys.
28
,
1315
(
1987
).
8.
A.
Tachibana
and
T.
Iwai
,
Phys. Rev. A
33
,
2262
(
1986
).
9.
T.
Iwai
,
J. Math. Phys.
40
,
2381
(
1999
).
10.
M.
Kummer
,
Indiana Univ. Math. J.
30
,
281
(
1981
).
11.
W. J.
Satzer
, Jr.
,
Indiana Univ. Math. J.
26
,
951
(
1977
).
12.
P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Oxford University Press, Oxford, 1958).
13.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
246
,
333
(
1958
).
14.
V.
Moncrief
,
Phys. Rev. D
5
,
277
(
1972
).
15.
N. P.
Landsman
and
N.
Linden
,
Nucl. Phys. B
365
,
121
(
1991
).
16.
N. P.
Landsman
,
J. Geom. Phys.
15
,
285
(
1995
).
17.
K. K.
Wren
,
J. Geom. Phys.
24
,
173
(
1998
).
18.
M. A.
Rieffel
,
Adv. Math.
13
,
176
(
1974
).
19.
S.
Tanimura
and
I.
Tsutsui
,
Mod. Phys. Lett. A
10
,
2607
(
1995
).
20.
S.
Tanimura
and
I.
Tsutsui
,
Ann. Phys.
258
,
137
(
1997
).
21.
J.
Śniatycki
and
A.
Weinstein
,
Lett. Math. Phys.
7
,
155
(
1983
).
22.
J. M.
Arms
,
M. J.
Gotay
, and
G.
Jennings
,
Adv. Math.
79
,
43
(
1990
).
23.
M.
Davis
,
Pac. J. Math.
77
,
315
(
1978
).
24.
M. Davis, Multiaxial Actions on Manifolds, Lecture Notes in Mathematics 643 (Springer, Berlin, 1978).
25.
G. E. Bredon, Introduction to Compact Transformation Groups (Academic, New York, 1972).
26.
J. M. Souriau, Structure des Systèmes Dynamiques (Dunod, Paris, 1975).
27.
J. C.
Simo
,
D. R.
Lewis
, and
J. E.
Marsden
,
Arch. Ration. Mech. Anal.
115
,
15
(
1991
).
28.
M. S.
Narasimhan
and
T. R.
Ramadas
,
Commun. Math. Phys.
67
,
121
(
1979
).
29.
R. G.
Littlejohn
and
M.
Reinsch
,
Phys. Rev. A
52
,
2035
(
1995
).
30.
R. G.
Littlejohn
and
M.
Reinsch
,
Rev. Mod. Phys.
69
,
213
(
1997
).
31.
K. A.
Mitchell
and
R. G.
Littlejohn
,
Mol. Phys.
96
,
1305
(
1999
).
32.
A.J.
Dragt
,
J. Math. Phys.
6
,
533
(
1965
).
33.
C.
Emmrich
and
H.
Römer
,
Commun. Math. Phys.
129
,
69
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.