We analyze the proof of Bell’s inequality and demonstrate that this inequality is related to one particular model of probability theory, namely Kolmogorov measure-theoretical axiomatics from 1933. We found a (numerical) statistical correction to Bell’s inequality. Such an additional term εφ on the right-hand side of Bell’s inequality can be considered as a probability invariant of a quantum state φ. This is a measure of nonreproducibility of hidden variables in different runs of experiments. Experiments to verify Bell’s inequality can be considered as just experiments to estimate the constant εφ. It seems that Bell’s inequality could not be used as a crucial reason to deny local realism. We consider deterministic as well as stochastic hidden variables models.

1.
J. F.
Clauser
and
A.
Shimony
,
Rep. Prog. Phys.
41
,
1881
1901
(
1978
);
A.
Aspect
,
J.
Dalibard
, and
G.
Roger
,
Phys. Rev. Lett.
49
,
1804
1807
(
1982
);
D.
Home
and
F.
Selleri
,
Riv. Nuovo Cimento
14
,
2
176
(
1991
).
2.
J. S.
Bell
,
Rev. Mod. Phys.
38
,
447
452
(
1966
).
3.
B. d’Espagnat, Veiled Reality. An analysis of present-day quantum mechanical concepts (Addison-Wesley, Reading, MA, 1995).
4.
L. E.
Ballentine
,
Rev. Mod. Phys.
42
,
358
381
(
1970
).
5.
L. De Broglie, La Physique Quantique Restera-t-elle Indeterministe? (Gauthier-Villars, Paris, 1953);
G. Lochak, “De Broglie’s initial conception of de Broglie waves,” in The wave—particle dualism. A tribute to Louis de Broglie on his 90th Birthday, edited by S. Diner, D. Fargue, G. Lochak, and F. Selleri (Reidel, Dordrecht, 1970) pp. 1–25;
L. Accardi, “The probabilistic roots of the quantum mechanical paradoxes,” ibid, pp. 47–55;
W. De
Muynck
and
W. De
Baere
,
Ann. Isr. Phys. Soc.
12
,
1
22
(
1996
);
W. De
Muynck
,
W. De
Baere
and
H.
Marten
,
Found. Phys.
24
,
1589
1663
(
1994
);
W.
De Baere
,
Lett. Nuovo Cimento Soc. Ital. Fis.
39
,
234
238
(
1984
);
I.
Pitowsky
,
Phys. Rev. Lett.
48
(
10
),
1299
1302
(
1982
);
I.
Pitowsky
,
Phys. Rev. D
27
(
10
),
2316
2326
(
1983
);
S. P.
Gudder
,
J. Math. Phys.
25
,
2397
2401
(
1984
);
W.
Muckenheim
,
Phys. Rep.
133
,
338
401
(
1986
).
6.
A. Yu.
Khrennikov
,
Soviet Phys. Dokl.
37
,
81
83
(
1992
);
A. Yu.
Khrennikov
,
J. Math. Phys.
32
, No
4
,
932
937
(
1991
);
A. Yu.
Khrennikov
,
Phys. Lett. A
200
,
119
223
(
1995
);
A. Yu.
Khrennikov
,
Physica A
215
,
577
587
(
1995
);
A. Yu.
Khrennikov
,
Int. J. Theor. Phys.
34
,
2423
2434
(
1995
);
A. Yu.
Khrennikov
,
J. Math. Phys.
36
,
6625
6632
(
1995
);
p-adic valued distributions in mathematical physics (Kluwer Academic, Dordrecht, 1994);
Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, (Kluwer Academic, Dordreht, 1997).
7.
A. N. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer Verlag, Berlin, 1933);
reprinted: Foundations of the Probability Theory (Chelsea, New York, 1956).
8.
T. L. Fine, Theories of probabilities, an examination of foundation (Academic, New York, 1973).
9.
R. von Mises, The mathematical theory of probability and statistics (Academic, London, 1964).
10.
P. H.
Eberhard
,
Nuovo Cimento B
46
,
392
400
(
1978
);
W.
de Muynck
and
J.
Steklenborg
,
Ann. Phys.
45
,
222
234
(
1988
).
11.
A.
Fine
,
Phys. Rev. Lett.
48
,
291
295
(
1982
).
12.
L. Accardi, Urne e Camaleoni: Dialogo sulla realta, le leggi del caso e la teoria quantistica (II Saggiatore, Rome, 1997).
This content is only available via PDF.
You do not currently have access to this content.