We prove that for any two commuting von Neumann algebras of infinite type, the open set of Bell correlated states for the two algebras is norm dense. We then apply this result to algebraic quantum field theory—where all local algebras are of infinite type—in order to show that for any two spacelike separated regions, there is an open dense set of field states that dictate Bell correlations between the regions. We also show that any vector state cyclic for one of a pair of commuting non-Abelian von Neumann algebras is entangled (i.e., nonseparable) across the algebras—from which it follows that every field state with bounded energy is entangled across any two spacelike separated regions.

1.
J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge U.P., Cambridge, 1987).
2.
J. F.
Clauser
,
M. A.
Horne
,
A.
Shimony
, and
R. A.
Holt
, “
Proposed experiment to test local hidden-variable theories
,”
Phys. Rev. Lett.
26
,
880
884
(
1969
).
3.
S. J.
Summers
, “
On the independence of local algebras in quantum field theory
,”
Rev. Math. Phys.
2
,
201
247
(
1990
).
4.
L. J.
Landau
, “
On the violation of Bell’s inequality in quantum theory
,”
Phys. Lett. A
120
,
54
56
(
1987
).
5.
S. J.
Summers
and
R. F.
Werner
, “
Maximal violation of Bell’s inequalities is generic in quantum field theory
,”
Commun. Math. Phys.
110
,
247
259
(
1987
).
6.
S. J.
Summers
and
R. F.
Werner
, “
Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions
,”
Ann. Inst. Henri Poincaré
49
,
215
243
(
1988
).
7.
S. J.
Summers
and
R. F.
Werner
, “
On Bell’s inequalities and algebraic invariants
,”
Lett. Math. Phys.
33
,
321
334
(
1995
).
8.
S. J. Summers, “Bell’s inequalities and algebraic structure,” in Operator Algebras and Quantum Field Theory, edited by S. Doplicher, R. Longo, J. E. Roberts, and L. Zsido (International, Cambridge, MA, 1997).
9.
M. L. G.
Redhead
, “
More ado about nothing
,”
Found. Phys.
25
,
123
137
(
1995
).
10.
L. J.
Landau
, “
On the non-classical structure of the vacuum
,”
Phys. Lett. A
123
,
115
118
(
1987
).
11.
R. F.
Werner
, “
Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model
,”
Phys. Rev. A
40
,
4277
4281
(
1989
).
12.
R. Clifton, H. Halvorson, and A. Kent, “Non-local correlations are generic in infinite-dimensional bipartite systems,” to appear in Phys. Rev. A.
13.
R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras (American Mathematical Society, Providence, RI, 1997).
14.
S.
Popescu
, “
Bell’s inequalities and density matrices: Revealing ‘hidden’ nonlocality
,”
Phys. Rev. Lett.
74
,
2619
2622
(
1995
).
15.
R.
Clifton
and
H.
Halvorson
, “
Bipartite mixed states of infinite-dimensional systems are generically nonseparable
,”
Phys. Rev. A
61
,
012108
(
2000
).
16.
G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1972), p. 101.
17.
R. Haag, Local Quantum Physics (Springer, New York, 1992), p. 125.
18.
G. F.
Dell’Antonio
, “
On the limit of sequences of normal states
,”
Commun. Pure Appl. Math.
20
,
413
429
(
1967
).
19.
J.
Dixmier
and
O.
Maréchal
, “
Vecteurs totalisateurs d’une algèbre de von Neumann
,”
Commun. Math. Phys.
22
,
44
50
(
1971
).
20.
K.
Zyczkowski
,
P.
Horodecki
,
A.
Sanpera
, and
M.
Lewenstein
, “
Volume of the set of separable states
,”
Phys. Rev. A
58
,
883
892
(
1998
).
21.
H.-J. Borchers, Translation Group and Particle Representations in Quantum Field Theory (Springer, New York, 1996).
22.
J.
Dimock
, “
Algebras of local observables on a manifold
,”
Commun. Math. Phys.
77
,
219
228
(
1980
).
23.
S.
Doplicher
,
R.
Haag
, and
J. E.
Roberts
, “
Fields, observables and gauge transformations I, II
,”
Commun. Math. Phys.
13
,
1
23
(
1969
);
S.
Doplicher
,
R.
Haag
, and
J. E.
Roberts
,
Commun. Math. Phys.
15
,
173
200
(
1969
).
24.
D.
Buchholz
and
K.
Fredenhagen
, “
Locality and the structure of particle states
,”
Commun. Math. Phys.
84
,
1
54
(
1982
).
25.
S. S. Horuzhy, Introduction to Algebraic Quantum Field Theory (Kluwer, Dordrecht, 1988).
26.
S.
Schlieder
, “
Einige Bemerkungen über Projektionsoperatoren
,”
Commun. Math. Phys.
13
,
216
225
(
1969
).
27.
B. S.
Kay
and
R. M.
Wald
, “
Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon
,”
Phys. Rep.
207
,
49
136
(
1991
).
28.
R.
Verch
, “
Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime
,”
Rev. Math. Phys.
9
,
635
674
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.