Asymptotically flat space–times with one Killing vector field are studied. The Killing equations are solved asymptotically using polyhomogeneous expansions (i.e., series in powers of 1/r and ln r), and solved order by order. The solution to the leading terms of these expansions yields the asymptotic form of the Killing vector field. The possible classes of Killing fields are discussed by analyzing their orbits on null infinity. The integrability conditions of the Killing equations are used to obtain constraints on the components of the Weyl tensor 012) and on the shear (σ). The behavior of the solutions to the constraint equations is studied. It is shown that for Killing fields that are non-supertranslational the characteristics of the constraint equations are the orbits of the restriction of the Killing field to null infinity. As an application, the particular case of boost-rotation symmetric space–times is considered. The constraints on Ψ0 are used to study the behavior of the coefficients that give rise to the Newman–Penrose constants, if the space–time is non-polyhomogeneous, or the logarithmic Newman–Penrose constants, if the space–time is polyhomogeneous.

1.
E. T.
Newman
and
R.
Penrose
,
Proc. R. Soc. London, Ser. A
305
,
175
(
1968
).
2.
J. A. Valiente
Kroon
,
Class. Quantum Grav.
15
,
2479
(
1998
).
3.
J. A. Valiente
Kroon
,
Class. Quantum Grav.
16
,
1653
(
1999
).
4.
P. T.
Chrusciel
,
M. A. H.
MacCallum
, and
D. B.
Singleton
,
Proc. R. Soc. London, Ser. A
350
,
113
(
1995
).
5.
J. A. Valiente
Kroon
,
Gen. Relativ. Gravit.
31
,
1219
(
1999
).
6.
J. Bičák, in Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, edited by J. A. Marck and J. P. Lasota (Cambridge U.P., Cambridge, 1995), p. 67.
7.
J.
Bičák
and
B. G.
Schmidt
,
Class. Quantum Grav.
6
,
1547
(
1989
).
8.
J.
Bičák
and
B. G.
Schmidt
,
Phys. Rev. D
40
,
1827
(
1989
).
9.
W. B.
Bonnor
and
N. S.
Swaminarayan
,
Z. Phys.
177
,
240
(
1964
).
10.
J.
Bičák
,
C.
Hoenselaers
, and
B. G.
Schmidt
,
Proc. R. Soc. London, Ser. A
390
,
397
(
1983
).
11.
J.
Bičák
,
C.
Hoenselaers
, and
B. G.
Schmidt
,
Proc. R. Soc. London, Ser. A
390
,
411
(
1983
).
12.
A.
Ashtekar
and
T.
Dray
,
Commun. Math. Phys.
79
,
581
(
1981
).
13.
J.
Bičák
and
A.
Pravdová
,
Class. Quantum Grav.
16
,
2023
(
1999
).
14.
J.
Bičák
,
Proc. R. Soc. London, Ser. A
302
,
201
(
1968
).
15.
W.
Kinnersley
and
M.
Walker
,
Phys. Rev. D
2
,
1359
(
1970
).
16.
J.
Bičák
and
B. G.
Schmidt
,
J. Math. Phys.
25
,
600
(
1984
).
17.
J.
Bičák
and
A.
Pravdová
,
J. Math. Phys.
39
,
6011
(
1998
).
18.
J. Stewart, Advanced General Relativity (Cambridge U.P., Cambridge, 1991).
19.
R. Penrose and W. Rindler, Spinors and Spacetime 1: Two-Spinor Calculus and Relativistic Fields (Cambridge U.P., Cambridge, 1983).
20.
J.
Kánnár
,
Proc. R. Soc. London, Ser. A
452
,
945
(
1996
).
21.
R.
Geroch
,
A.
Held
, and
R.
Penrose
,
J. Math. Phys.
14
,
874
(
1973
).
22.
C.
Kolassis
and
G.
Ludwig
,
Gen. Relativ. Gravit.
25
,
625
(
1993
).
23.
C. D.
Collinson
and
D. C.
French
,
J. Math. Phys.
8
,
701
(
1967
).
24.
A.
Ashtekar
and
B. C.
Xanthopolous
,
J. Math. Phys.
19
,
2216
(
1978
).
25.
A.
Ashtekar
and
B. G.
Schmidt
,
J. Math. Phys.
21
,
862
(
1980
).
26.
R. O.
Hansen
,
J. Math. Phys.
15
,
46
(
1974
).
27.
P. K.
Kundu
,
J. Math. Phys.
29
,
1866
(
1988
).
28.
T.
Dray
and
M.
Streubel
,
Class. Quantum Grav.
1
,
15
(
1984
).
29.
R.
Penrose
,
Proc. R. Soc. London, Ser. A
381
,
53
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.