Seven different triple sum formulas for 9j coefficients of the quantum algebra uq(2) are derived, using for these purposes the usual expansion of q-9j coefficients in terms of q-6j coefficients and recently derived summation formula of twisted q-factorial series (resembling the very well-poised basic hypergeometric φ45 series) as a q-generalization of Dougall’s summation formula of the very well-poised hypergeometric F34(−1) series. This way for q=1 Rosengren’s second proof of the SU(1,1) case is adapted for the SU(2) case to derive the known triple sum formula of Ališauskas and Jucys, as well as six new independent triple sum formulas for the Wigner 9j coefficients of the angular momentum theory. The mutual rearrangement possibilities of the derived triple sum formulas by means of the Chu–Vandermonde summation formulas are considered and applied to derive several versions of double sum formulas for the stretched q-9j coefficients, which give new rearrangement and summation formulas of special Kampé de Fériet functions and their q-generalizations.

1.
A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
2.
A. P. Jucys, I. B. Levinson, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translations, Jerusalem, 1962) [Russian Original, Gospolitnauchizdat, Vilnius, 1960].
3.
A. P. Jucys and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics, 2nd ed. (Mokslas, Vilnius, 1977) (in Russian).
4.
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Theory and Applications, Encyclopedia of Mathematics and its Applications (Addison–Wesley, Reading, 1981), Vol. 8.
5.
L. C. Biedenharn and J. D. Louck, The Racah–Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications (Addison–Wesley, Reading, 1981), Vol. 9.
6.
S.
Ališauskas
and
A. P.
Jucys
,
J. Math. Phys.
12
,
594
(
1971
);
S.
Ališauskas
and
A. P.
Jucys
,
J. Math. Phys.
13
,
575
(E) (
1972
).
7.
S.
Ališauskas
and
A. P.
Jucys
,
J. Math. Phys.
10
,
2227
(
1969
).
8.
A. P. Jucys and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics (Mintis, Vilnius, 1965) (in Russian). Note the misleading reference (concerning the triple sum formula for the 9j coefficients) to this edition in Ref. 4.
9.
D. Q.
Zhao
and
R. N.
Zare
,
Mol. Phys.
65
,
1263
(
1988
).
10.
K.
Srinivasa Rao
,
V.
Rajeswary
, and
C. B.
Chiu
,
Comput. Phys. Commun.
56
,
231
(
1989
).
11.
S. T.
Lai
and
Y. N.
Chiu
,
Comput. Phys. Commun.
70
,
544
(
1992
).
12.
C. C. J.
Roothaan
,
Int. J. Quantum Chem., Symp.
S27
,
13
(
1993
).
13.
K.
Srinivasa Rao
and
V.
Rajeswary
,
J. Phys. A
21
,
4255
(
1988
).
14.
K.
Srinivasa Rao
,
S. N.
Pitre
, and
J.
Van der Jeugt
,
Rev. Mex. Fis.
42
,
179
(
1996
).
15.
K.
Srinivasa Rao
and
J.
Van der Jeugt
,
J. Phys. A
27
,
3083
(
1994
).
16.
J.
Van der Jeugt
,
S. N.
Pitre
, and
K.
Srinivasa Rao
,
J. Phys. A
27
,
5251
(
1994
).
17.
S. N.
Pitre
and
J.
Van der Jeugt
,
J. Math. Anal. Appl.
202
,
121
(
1996
).
18.
K. Srinivasa Rao, in Special Functions and Differential Equations, in Proceedings of the Workshop (WSSF97), Madras, 1997, edited by K. Srinivasa Rao, R. Jagannathan, G. Vanden Berghe, and J. Van der Jeugt (Allied, New Delhi, 1998), p. 165.
19.
J. Van der Jeugt, S. N. Pitre, and K. Srinivasa Rao, in Special Functions and Differential Equations, in Proceedings of the Workshop (WSSF97), Madras, 1997, edited by K. Srinivasa Rao et al. (Allied, New Delhi, 1998), p. 171.
20.
K.
Srinivasa Rao
and
J.
Van der Jeugt
,
Int. J. Theor. Phys.
37
,
891
(
1998
).
21.
A. C. T.
Wu
,
J. Math. Phys.
14
,
1222
(
1973
).
22.
K.
Srinivasa Rao
and
V.
Rajeswary
,
J. Math. Phys.
30
,
1016
(
1989
).
23.
M.
Nomura
,
J. Phys. Soc. Jpn.
58
,
2677
(
1989
).
24.
S.
Ališauskas
,
Liet. Fiz. Rink. [Litov. Fiz. Sb.]
13
,
829
(
1973
) (in Russian).
25.
H.
Rosengren
,
J. Math. Phys.
39
,
6730
(
1998
).
26.
H. Rosengren, “Multivariable Orthogonal Polynomials as Coupling Coefficients for Lie and Quantum Algebra Representations,” Lund University, Doctoral Theses in Math. Sc. 1999:2.
27.
H.
Rosengren
,
J. Math. Phys.
40
,
6689
(
1999
). See also remarks on paper 3 (which corresponds to a reprint of Ref. 25) in Ref. 26.
28.
L. J. Slater, Generalized Hypergeometric Series (Cambridge University Press, Cambridge, 1966).
29.
M.
Nomura
,
J. Math. Phys.
30
,
2397
(
1989
).
30.
M.
Nomura
,
J. Phys. Soc. Jpn.
58
,
2694
(
1989
).
31.
M.
Nomura
,
J. Phys. Soc. Jpn.
59
,
3851
(
1990
).
32.
M.
Nomura
,
J. Phys. Soc. Jpn.
60
,
1906
(
1991
).
33.
Yu. F.
Smirnov
,
V. N.
Tolstoy
, and
Yu. I.
Kharitonov
, Preprint LIYaF No. 1665, Leningrad, 1990; Yad. Fiz. 55, 2863 (1992) [
Sov. J. Nucl. Phys.
55
,
1599
(
1992
)].
34.
S.
Ališauskas
,
J. Phys. A
30
,
4615
(
1997
). Note that the degree of q in the r.h.s. of Eq. (4.11) should be changed to opposite.
35.
R.
Álvarez-Nodarse
and
Yu. F.
Smirnov
,
J. Phys. A
29
,
1435
(
1996
).
36.
J.
Kampé de Fériet
,
C.R. Acad. Sci. Paris
173
,
489
(
1921
).
37.
A. A.
Bandzaitis
,
K. P.
Žukauskas
,
A. J.
Matulis
, and
A. P.
Jucys
, Liet. Fiz. Rink. [
Litov. Fiz. Sb.
]
4
,
35
(
1964
) (in Russian).
38.
Yu. F.
Smirnov
,
V. N.
Tolstoy
, and
Yu. I.
Kharitonov
, Yad. Fiz. 53, 1746 (1991) [
Sov. J. Nucl. Phys.
53
,
1068
(
1991
)].
39.
R. M.
Asherova
,
Yu. F.
Smirnov
, and
V. N.
Tolstoy
, Yad. Fiz. 59, 1859 (1996) [
Phys. Atom. Nucl.
59
,
1795
(
1996
)];
R. M.
Asherova
,
Yu. F.
Smirnov
, and
V. N.
Tolstoy
,
Czech. J. Phys.
46
,
127
(
1996
).
40.
G.
Racah
,
Phys. Rev.
62
,
438
(
1942
).
41.
Although the third sum may be nonvanishing in spite of such spoiling of the triangular conditions.
42.
P. W.
Karlsson
,
J. Math. Phys.
12
,
270
(
1971
).
43.
S.
Ališauskas
,
A.-A. A.
Jucys
, and
A. P.
Jucys
,
J. Math. Phys.
13
,
1329
(
1972
).
44.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Vol. 35, in Encyclopedia of Mathematics and Its Applications, edited by G.-C. Rota (Cambridge University Press, Cambridge, 1990).
45.
S.
Ališauskas
and
Yu. F.
Smirnov
,
J. Phys. A
27
,
5925
(
1994
).
46.
V. A.
Groza
,
I. I.
Kachurik
, and
A. U.
Klimyk
,
J. Math. Phys.
31
,
2769
(
1990
).
47.
Yu. F.
Smirnov
,
V. N.
Tolstoy
, and
Yu. I.
Kharitonov
, Yad. Fiz. 53, 959 (1991) [
Sov. J. Nucl. Phys.
53
,
593
(
1991
)].
48.
R. T.
Sharp
,
Nucl. Phys. A
95
,
222
(
1967
).
49.
S.
Ališauskas
, Liet. Fiz. Rink. 14, 545 (1974) [
Sov. Phys. Collect. (Lit. Fiz. Sb.)
14
(
4
),
1
(
1974
)].
50.
M. A.
Lohe
and
L. C.
Biedenharn
,
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
25
,
218
(
1994
).
51.
S.
Ališauskas
and
J. P.
Draayer
,
J. Phys. A
31
,
7461
(
1998
). Note, that the denominator factor (q|q)k in Eq. (2.11) should be corrected to (1|q)k, as well as in the corresponding definitions given in Refs. 34 and 35.
52.
S.
Ališauskas
,
J. Math. Phys.
37
,
5719
(
1996
).
53.
S.
Ališauskas
,
J. Math. Phys.
40
,
5939
(
1999
). Note, that the term “+ks+” in the denominator of the last row of Eq. (1.8) should be written as “+k+s+” and the all terms in the first row of the r.h.s. of Eq. (1.12) should be in exponent of q.
This content is only available via PDF.
You do not currently have access to this content.