In the jet bundle description of field theories (multisymplectic models, in particular), there are several choices for the multimomentum bundle where the covariant Hamiltonian formalism takes place. As a consequence, several proposals for this formalism can be stated, and, on each one of them, the differentiable structures needed for setting the formalism are obtained in different ways. In this work we make an accurate study of some of these Hamiltonian formalisms, showing their equivalence. In particular, the geometrical structures (canonical or not) needed for the Hamiltonian formalism, are introduced and compared, and the derivation of Hamiltonian field equations from the corresponding variational principle is shown in detail. Furthermore, the Hamiltonian formalism of systems described by Lagrangians is performed, both for the hyper-regular and almost-regular cases. Finally, the role of connections in the construction of Hamiltonian field theories is clarified.

1.
A.
Echeverrı́a-Enrı́quez
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, “
Geometry of Lagrangian first-order classical field theories
,”
Fortschr. Phys.
44
,
235
280
(
1996
).
2.
A.
Awane
, “
k-symplectic structures
,”
J. Math. Phys.
33
,
4046
4052
(
1992
).
3.
L. K.
Norris
, “
Generalized symplectic geometry in the frame bundle of a manifold
,”
Proc. Symposia Pure Math.
54
,
435
465
(
1993
).
4.
M.
Puta
, “
Some remarks on the k-symplectic manifolds
,”
Tensor N.S.
47
,
109
115
(
1988
).
5.
M. De León, I. Méndez, and M. Salgado, “p-almost tangent structures,” R. C. Mat. Palermo Ser. II, t XXXVII, , 282–294 (1988).
6.
M.
De León
,
I.
Méndez
, and
M.
Salgado
, “
Regular p-almost cotangent structures
,”
J. Korean Math.
25
,
273
287
(
1988
).
7.
M.
De León
,
E.
Merino
,
J. A.
Oubiña
,
P. R.
Rodrigues
, and
M.
Salgado
, “
Hamiltonian systems on k-cosymplectic manifolds
,”
J. Math. Phys.
39
,
876
893
(
1998
).
8.
M. De León, E. Merino, and M. Salgado “k-cosymplectic manifolds and Lagrangian formalism for field theories” (unpublished).
9.
C.
Günther
, “
The polysymplectic Hamiltonian formalism in the field theory and the calculus of variations I: the local case
,”
J. Diff. Geom.
25
,
23
53
(
1987
).
10.
I. Kanatchikov, “Novel algebraic structures from the polysymplectic form in field theory,” GROUP21, in Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, Vol. 2, edited by H. A. Doebner, W. Scherer, and C. Schulte (World Scientific, Singapore, 1997), p. 894.
11.
I. V.
Kanatchikov
, “
Canonical structure of classical field theory in the polymomentum phase space
,”
Rep. Math. Phys.
41
,
49
90
(
1998
).
12.
F.
Cantrijn
,
L. A.
Ibort
, and
M.
De León
, “
Hamiltonian structures on multisymplectic manifolds
,”
Rend. Sem. Math. Univ. Pol. Torino
54
,
225
236
(
1996
).
13.
F.
Cantrijn
,
L. A.
Ibort
, and
M.
De Leon
, “
On the geometry of multisymplectic manifolds
,”
J. Aust. Math. Soc. Ser.
66
,
303
330
(
1999
).
14.
S. P.
Hrabak
, math-ph/9901012,
1999
.
15.
S. P.
Hrabak
, math-ph/9901013,
1999
.
16.
L. A.
Ibort
,
A.
Echeverrı́a-Enrı́quez
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, math.DG/9805040,
1998
.
17.
G.
Martin
, “
Dynamical structures for k-vector fields
,”
Int. J. Theor. Phys.
27
,
571
585
(
1988
).
18.
G.
Martin
, “
A Darboux theorem for multisymplectic manifolds
,”
Lett. Math. Phys.
16
,
133
138
(
1988
).
19.
M. J. Gotay, “A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,” in Mechanics Analysis and Geometry: 200 Years after Lagrange, edited by M. Francaviglia (Elsevier Science, New York, 1991), pp. 203–235.
20.
M. J.
Gotay
, “
A multisymplectic framework for classical field theory and the calculus of variations II: Space+Time Decomposition
,”
Diff. Geom. Applic.
1
,
375
390
(
1991
).
21.
M. J. Gotay, J. Isenberg, J. E. Marsden, R. Montgomery, J. Śniatycki, P. B. Yasskin, Momentum maps and classical relativistic fields I: Covariant Theory, GIMMSY, 1997.
22.
J.
Kijowski
, “
A finite-dimensional canonical formalism in the classical field theory
,”
Chem. Phys. Lett.
30
,
99
128
(
1973
).
23.
J.
Kijowski
and
W.
Szczyrba
, “
Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory
,”
Géométrie Symplectique et Physique Mathématique Coll. Int. C.N.R.S.
237
,
347
378
(
1975
).
24.
J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories, Lecture Notes in Physics Vol. 170 (Springer-Verlag, Berlin, 1979).
25.
J. K.
Lawson
, “
A frame bundle generalization of multisymplectic geometries
,”
Rep. Math. Phys.
45
,
183
205
(
2000
).
26.
J. E.
Marsden
and
S.
Shkoller
, “
Multisymplectic geometry, covariant Hamiltonians and water waves
,”
Math. Proc. Cambridge Philos. Soc.
125
,
553
575
(
1999
).
27.
J. F.
Cariñena
,
M.
Crampin
, and
L. A.
Ibort
, “
On the multisymplectic formalism for first order Field Theories
,”
Diff. Geom. Applic.
1
,
345
374
(
1991
).
28.
M.
De León
,
J.
Marı́n-Solano
, and
J. C.
Marrero
, “
Ehresmann connections in classical field theories,” Proc. III Fall Workshop: Differential Geometry and its Applications
[
An. Fı́s. Monografı́as
2
,
73
89
(
1995
)].
29.
M. De León, J. Marı́n-Solano, and J. C. Marrero, “A geometrical approach to classical field theories: A constraint algorithm for singular theories,” in Proceedings on New Developments in Differential Geometry, edited by L. Tamassi-J. Szenthe (Kluwer Academic, New York, 1996), pp. 291–312.
30.
A.
Echeverrı́a-Enrı́quez
and
M. C.
Muñoz-Lecanda
, “
Variational calculus in several variables: a Hamiltonian approach
,”
Ann. Inst. Henri Poincare
56
,
27
47
(
1992
).
31.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
, “
Constraint Hamiltonian systems and gauge theories
,”
Int. J. Theor. Phys.
34
,
2353
2371
(
1995
).
32.
G. Giachetta, L. Mangiarotti, and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore, 1997).
33.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
, “
Covariant Hamiltonian equations for field theory
,”
J. Phys. A
1
,
375
390
(
1999
).
34.
G. Sardanashvily, Generalized Hamiltonian formalism for Field Theory. Constraint Systems (World Scientific, Singapore, 1995).
35.
G.
Sardanashvily
and
O.
Zakharov
, “
The Multimomentum Hamiltonian formalism for field systems
,”
Int. J. Theor. Phys.
31
,
1477
1504
(
1992
).
36.
G.
Sardanashvily
and
O.
Zakharov
, “
On application of the Hamilton formalism in fibred manifolds to field theory
,”
Diff. Geom. Applic.
3
,
245
263
(
1993
).
37.
V.
Aldaya
and
J. A.
De Azcárraga
, “
Geometric formulation of classical mechanics and field theory
,”
Riv. Nuovo Cimento
3
,
1
66
(
1980
).
38.
P. L. Garcı́a, “The Poincaré-Cartan invariant in the calculus of variations,” Symp. Math. 14 (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973) (Academic, London, 1974), pp. 219–246.
39.
H.
Goldschmidt
and
S.
Sternberg
, “
The Hamilton-Cartan formalism in the calculus of variations
,”
Ann. Inst. Fourier Grenoble
23
,
203
267
(
1973
).
40.
D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lect. Notes Ser. 142 (Cambridge University Press, Cambridge, 1989).
41.
E. Binz, J. Sniatycki, and H. Fisher, The geometry of classical fields (North-Holland, Amsterdam, 1988).
42.
D. J.
Saunders
, “
The Cartan form in Lagrangian field theories
,”
J. Phys. A
20
,
333
349
(
1987
).
43.
A.
Echeverrı́a-Enrı́quez
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, “
Non-standard connections in classical mechanics
,”
J. Phys. A
28
,
5553
5567
(
1995
).
44.
A.
Echeverrı́a-Enrı́quez
,
M. C.
Munoz-Lecanda
, and
N.
Roman-Roy
, “
On the multimomentum bundles and the Legendre maps in field theories
,”
Rep. Math. Phys.
45
,
85
105
(
2000
).
45.
M.
De León
,
J.
Marı́n-Solano
, and
J. C.
Marrero
, “
The constraint algorithm in the jet formalism
,”
Diff. Geom. Applic.
6
,
275
300
(
1996
).
46.
D.
Chinea
,
M.
De León
, and
J. C.
Marrero
, “
The constraint algorithm for time-dependent Lagrangians
,”
J. Math. Phys.
7
,
3410
3447
(
1994
).
47.
A.
Echeverrı́a-Enrı́quez
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, “
Geometrical setting of time-dependent regular systems. Alternative models
,”
Rep. Math. Phys.
3
,
301
330
(
1991
).
48.
A.
Echeverrı́a-Enrı́quez
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, “
Multivector Fields and Connections. Setting Lagrangian Equations in Field Theories
,”
J. Math. Phys.
39
,
4578
4603
(
1998
).
49.
A.
Echeverrı́a-Enrı́quez
,
M. C.
Muñoz-Lecanda
, and
N.
Román-Roy
, “
Multivector field formulation of Hamiltonian field theories: Equations and symmetries
,”
J. Phys. A
32
,
8461
8484
(
1999
).
50.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
, “
Hamiltonian time-dependent Mechanics
,”
J. Math. Phys.
39
,
2714
2729
(
1998
).
51.
R.
Kuwabara
, “
Time-dependent mechanical symmetries and extended Hamiltonian systems
,”
Rep. Math. Phys.
19
,
27
38
(
1984
).
52.
M. F.
Rañada
, “
Extended Legendre transformation approach to the time-dependent hamiltonian formalism
,”
J. Phys. A
25
,
4025
4035
(
1992
).
53.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
, “
Constraints in Hamiltonian time-dependent mechanics
,”
J. Math. Phys.
41
,
2858
2876
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.