This paper is concerned with the one-dimensional stationary linear Wigner equation, a kinetic formulation of quantum mechanics. Specifically, we analyze the well-posedness of the boundary value problem on a slab of the phase space with given inflow data for a discrete-velocity model. We find that the problem is uniquely solvable if zero is not a discrete velocity. Otherwise one obtains a differential-algebraic equation of index 2 and, hence, the inflow data make the system overdetermined.

1.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
2.
P. A.
Markowich
, “
On the equivalence of the Schrödinger equation and the quantum Liouville equation
,”
Math. Methods Appl. Sci.
11
,
459
469
(
1989
).
3.
A.
Arnold
and
F.
Nier
, “
Numerical analysis of the deterministic particle method applied to the Wigner equation
,”
Math. Comput.
58
,
645
669
(
1992
).
4.
K.
Imre
,
E.
Özizmir
,
M.
Rosenbaum
, and
P. F.
Zweifel
, “
Wigner method in quantum statistical mechanics
,”
J. Math. Phys.
8
,
1097
1108
(
1967
).
5.
P.
Carruthers
and
F.
Zachariasen
, “
Quantum collision theory with phase space distributions
,”
Rev. Mod. Phys.
55
,
245
285
(
1983
).
6.
M. C.
Teich
and
B. F. A.
Saleh
, “
Squeezed and antibunched light
,”
Phys. Today
43
,
26
34
(
1990
).
7.
M.
di Toro
,
U.
Lombardo
, and
G.
Russo
, “
Small oscillations in a nuclear Vlasov fluid
,”
Nuovo Cimento A
87
,
174
189
(
1985
).
8.
P. F.
Zweifel
and
B.
Toomire
, “
Boundary conditions in quantum transport theory
,”
Transp. Theory Stat. Phys.
26
,
629
636
(
1997
).
9.
N.
Kluksdahl
,
A. M.
Kriman
,
D. K.
Ferry
, and
C.
Ringhofer
, “
Self-consistent study of the resonant tunneling diode
,”
Phys. Rev. B
39
,
7720
7735
(
1989
).
10.
P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer, New York, 1990).
11.
W. R.
Frensley
, “
Boundary conditions for open quantum systems driven far from equilibrium
,”
Rev. Mod. Phys.
62
,
745
791
(
1990
).
12.
C.
Ringhofer
,
D.
Ferry
, and
N.
Kluksdahl
, “
Absorbing boundary conditions for the simulation of quantum transport phenomena
,”
Transp. Theory Stat. Phys.
18
,
331
346
(
1989
).
13.
A.
Arnold
, “
On absorbing boundary conditions for quantum transport equations
,”
Math. Modell. Numer. Anal.
28
,
853
872
(
1994
).
14.
P. A.
Markowich
and
C.
Ringhofer
, “
An analysis of the quantum Liouville equation
,”
Z. Angew. Math. Mech.
69
,
121
127
(
1989
).
15.
P. A.
Markowich
and
P.
Degond
, “
A quantum transport model for semiconductors: The Wigner Poisson problem on a bounded Brillouin zone
,”
Math. Modell. Numer. Anal.
24
,
697
710
(
1990
).
16.
N.
Ben Abdallah
,
P.
Degond
, and
P. A.
Markowich
, “
On a one-dimensional Schrödinger–Poisson scattering model
,”
ZAMP
48
,
135
155
(
1997
).
17.
N.
Ben Abdallah
, “
A hybrid kinetic-quantum model for stationary electron transport in a resonant tunneling diode
,”
J. Stat. Phys.
90
,
627
662
(
1998
).
18.
H.
Lange
,
B.
Toomire
, and
P.
Zweifel
, “
Inflow conditions in quantum transport theory
,”
VLSI Design
9
,
385
396
(
1997
) (special issue).
19.
K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison–Wesley, Reading, MA, 1967).
20.
C.
Bardos
, “
Boundary value problems for first order partial differential equations with real coefficient; approximation theorems; application to the transport equation
,”
Ann. Scient. Ec. Norm. Sup. 4eme serie
3
,
185
233
(
1970
).
21.
L. Arkeryd and A. Nouri, “L1 solutions to the stationary Boltzmann equation in a slab,” (preprint).
22.
R.
Beals
, “
An abstract treatment of some forward-backward problems of transport and scattering
,”
J. Funct. Anal.
34
,
1
20
(
1979
).
23.
W. Greenberg, C. van der Mee, and V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory (Birkhäuser, Basel, 1997).
24.
C.
Greengard
and
P. A.
Raviart
, “
A boundary-value problem for the stationary Vlasov–Poisson equations: The plane diode
,”
Commun. Pure Appl. Math.
43
,
473
507
(
1990
).
25.
C.
Ringhofer
, “
A spectral method for the numerical simulation of quantum tunneling phenomena
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
27
,
32
50
(
1990
).
26.
A.
Arnold
and
C.
Ringhofer
, “
Operator splitting methods applied to spectral discretizations of quantum transport equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
32
,
1876
1894
(
1995
).
27.
Y. Katznelson, An Introduction to Harmonic Analysis (Dover, New York, 1976).
28.
C.
Cercignani
,
R.
Illner
, and
M.
Shinbrot
, “
A boundary value problem for discrete-velocity models
,”
Duke Math. J.
55
,
889
900
(
1987
).
29.
S.
Kawashima
, “
Existence and stability of stationary solutions to the discrete Boltzmann equation
,”
Jpn. J. Indust. Appl. Math.
8
,
389
429
(
1991
).
30.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 2nd ed. (Springer, New York, 1992).
31.
M.
Cessenat
, “
Théorèmes de trace pour des espaces de fonctions de la neutronique
,”
C. R. Acad. Sci., Ser. I: Math.
300
,
89
92
(
1985
).
32.
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems II, Vol 6. (Springer, Berlin, 1993).
33.
L.
Arkeryd
,
C.
Cercignani
, and
R.
Illner
, “
Measure solutions of the steady Boltzmann equation in a slab
,”
Commun. Math. Phys.
142
,
285
296
(
1991
).
34.
E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treatment (Teubner, Leipzig, 1986).
35.
K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics Vol. 14 (SIAM, Philadelphia, 1989).
This content is only available via PDF.
You do not currently have access to this content.