This paper is concerned with the one-dimensional stationary linear Wigner equation, a kinetic formulation of quantum mechanics. Specifically, we analyze the well-posedness of the boundary value problem on a slab of the phase space with given inflow data for a discrete-velocity model. We find that the problem is uniquely solvable if zero is not a discrete velocity. Otherwise one obtains a differential-algebraic equation of index 2 and, hence, the inflow data make the system overdetermined.
REFERENCES
1.
E.
Wigner
, “On the quantum correction for thermodynamic equilibrium
,” Phys. Rev.
40
, 749
–759
(1932
).2.
P. A.
Markowich
, “On the equivalence of the Schrödinger equation and the quantum Liouville equation
,” Math. Methods Appl. Sci.
11
, 459
–469
(1989
).3.
A.
Arnold
and F.
Nier
, “Numerical analysis of the deterministic particle method applied to the Wigner equation
,” Math. Comput.
58
, 645
–669
(1992
).4.
K.
Imre
, E.
Özizmir
, M.
Rosenbaum
, and P. F.
Zweifel
, “Wigner method in quantum statistical mechanics
,” J. Math. Phys.
8
, 1097
–1108
(1967
).5.
P.
Carruthers
and F.
Zachariasen
, “Quantum collision theory with phase space distributions
,” Rev. Mod. Phys.
55
, 245
–285
(1983
).6.
M. C.
Teich
and B. F. A.
Saleh
, “Squeezed and antibunched light
,” Phys. Today
43
, 26
–34
(1990
).7.
M.
di Toro
, U.
Lombardo
, and G.
Russo
, “Small oscillations in a nuclear Vlasov fluid
,” Nuovo Cimento A
87
, 174
–189
(1985
).8.
P. F.
Zweifel
and B.
Toomire
, “Boundary conditions in quantum transport theory
,” Transp. Theory Stat. Phys.
26
, 629
–636
(1997
).9.
N.
Kluksdahl
, A. M.
Kriman
, D. K.
Ferry
, and C.
Ringhofer
, “Self-consistent study of the resonant tunneling diode
,” Phys. Rev. B
39
, 7720
–7735
(1989
).10.
P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer, New York, 1990).
11.
W. R.
Frensley
, “Boundary conditions for open quantum systems driven far from equilibrium
,” Rev. Mod. Phys.
62
, 745
–791
(1990
).12.
C.
Ringhofer
, D.
Ferry
, and N.
Kluksdahl
, “Absorbing boundary conditions for the simulation of quantum transport phenomena
,” Transp. Theory Stat. Phys.
18
, 331
–346
(1989
).13.
A.
Arnold
, “On absorbing boundary conditions for quantum transport equations
,” Math. Modell. Numer. Anal.
28
, 853
–872
(1994
).14.
P. A.
Markowich
and C.
Ringhofer
, “An analysis of the quantum Liouville equation
,” Z. Angew. Math. Mech.
69
, 121
–127
(1989
).15.
P. A.
Markowich
and P.
Degond
, “A quantum transport model for semiconductors: The Wigner Poisson problem on a bounded Brillouin zone
,” Math. Modell. Numer. Anal.
24
, 697
–710
(1990
).16.
N.
Ben Abdallah
, P.
Degond
, and P. A.
Markowich
, “On a one-dimensional Schrödinger–Poisson scattering model
,” ZAMP
48
, 135
–155
(1997
).17.
N.
Ben Abdallah
, “A hybrid kinetic-quantum model for stationary electron transport in a resonant tunneling diode
,” J. Stat. Phys.
90
, 627
–662
(1998
).18.
H.
Lange
, B.
Toomire
, and P.
Zweifel
, “Inflow conditions in quantum transport theory
,” VLSI Design
9
, 385
–396
(1997
) (special issue).19.
K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison–Wesley, Reading, MA, 1967).
20.
C.
Bardos
, “Boundary value problems for first order partial differential equations with real coefficient; approximation theorems; application to the transport equation
,” Ann. Scient. Ec. Norm. Sup. 4eme serie
3
, 185
–233
(1970
).21.
L. Arkeryd and A. Nouri, “ solutions to the stationary Boltzmann equation in a slab,” (preprint).
22.
R.
Beals
, “An abstract treatment of some forward-backward problems of transport and scattering
,” J. Funct. Anal.
34
, 1
–20
(1979
).23.
W. Greenberg, C. van der Mee, and V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory (Birkhäuser, Basel, 1997).
24.
C.
Greengard
and P. A.
Raviart
, “A boundary-value problem for the stationary Vlasov–Poisson equations: The plane diode
,” Commun. Pure Appl. Math.
43
, 473
–507
(1990
).25.
C.
Ringhofer
, “A spectral method for the numerical simulation of quantum tunneling phenomena
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
27
, 32
–50
(1990
).26.
A.
Arnold
and C.
Ringhofer
, “Operator splitting methods applied to spectral discretizations of quantum transport equations
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
32
, 1876
–1894
(1995
).27.
Y. Katznelson, An Introduction to Harmonic Analysis (Dover, New York, 1976).
28.
C.
Cercignani
, R.
Illner
, and M.
Shinbrot
, “A boundary value problem for discrete-velocity models
,” Duke Math. J.
55
, 889
–900
(1987
).29.
S.
Kawashima
, “Existence and stability of stationary solutions to the discrete Boltzmann equation
,” Jpn. J. Indust. Appl. Math.
8
, 389
–429
(1991
).30.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 2nd ed. (Springer, New York, 1992).
31.
M.
Cessenat
, “Théorèmes de trace pour des espaces de fonctions de la neutronique
,” C. R. Acad. Sci., Ser. I: Math.
300
, 89
–92
(1985
).32.
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems II, Vol 6. (Springer, Berlin, 1993).
33.
L.
Arkeryd
, C.
Cercignani
, and R.
Illner
, “Measure solutions of the steady Boltzmann equation in a slab
,” Commun. Math. Phys.
142
, 285
–296
(1991
).34.
E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treatment (Teubner, Leipzig, 1986).
35.
K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics Vol. 14 (SIAM, Philadelphia, 1989).
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.