A generalized Lane–Emden equation with indices (α,β,ν,n) is discussed, which reduces to the Lane–Emden equation proper for α=2,β=1,ν=1. General properties of the set of solutions of this equation are derived, and exact solutions are given. These include a singular solution without free integration constant for arbitrary n and for particular relations between n, ν, and α. Among the two-parameter solutions nonequivalent families of solutions of the same equation are obtained.

1.
W. Thomson, Collected Papers (Cambridge University Press, Cambridge, 1911), Vol. 5, p. 266.
2.
R. Emden, Gaskugeln (Teubner, Leipzig and Berlin, 1907).
3.
R. H.
Fowler
,
Quart. J. pure and appl. Math.
45
,
289
(
1914
);
R. H.
Fowler
,
Quart. J. pure and appl. Math.
2
(Oxford Series),
259
(
1931
),
R. H.
Fowler
,
MNRS
91
,
63
(
1930
).
4.
G.
Sansone
,
Rend. Matemat.
1
,
163
(
1940
).
5.
S. D.
Maharaj
,
P. G. L.
Leach
, and
R.
Maartens
,
Gen. Relativ. Gravit.
23
,
261
(
1991
).
6.
G. P.
Horedt
,
Astron. Astrophys.
126
,
357
(
1986
).
7.
C. M.
Bender
et al.,
J. Math. Phys.
30
,
1447
(
1989
).
8.
G. P.
Horedt
,
Astron. Astrophys.
172
,
359
(
1987
).
9.
P. M.
Lima
,
J. Comput. Appl. Math.
70
,
245
(
1996
);
P. M.
Lima
,
Appl. Numer. Math.
30
,
93
(
1999
).
10.
I. W.
Roxburgh
and
L. M
Stockman
,
Mon. Not. R. Astron. Soc.
303
,
466
(
1999
).
11.
G.
Adomian
,
R.
Rach
, and
N. T.
Shawagfeh
,
Found. Phys. Lett.
8
,
161
(
1995
).
12.
N. T
Shawagfeh
,
J. Math. Phys.
34
,
4364
(
1993
).
13.
P. B.
Burt
,
Nuovo Cimento Soc. Ital. Fis., B
100
,
43
(
1987
).
14.
S. Chandrasekhar, An introduction to the study of stellar structure (Dover, New York, 1957), Chap. IV.
15.
H. T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962).
16.
B. K.
Datta
,
Nuovo Cimento Soc. Ital. Fis., B
111
,
1385
(
1996
).
17.
M. H. Wrubel, “Stellar Interiors,” in Encyclopedia of Physics, edited by S. Flügge (Springer-Verlag, Berlin 1958), Vol. 51, p. 53.
18.
B.
Meerson
,
E.
Megged
, and
T.
Tajima
,
Ap. J.
457
,
321
(
1996
).
19.
S.
Gnutzmann
and
U.
Ritschel
,
Z. Phys. B: Condens. Matter
96
,
391
(
1995
).
20.
N. A.
Bahcall
,
Ap. J.
186
,
1179
(
1973
).
21.
N. A.
Bahcall
,
Ap. J.
198
,
249
(
1975
).
22.
L. H.
Thomas
,
Proc. Cambridge Philos. Soc.
13
,
542
(
1927
);
E.
Fermi
,
Rend. Acad. Naz. Lincei, Cl. Sci., Fis., Mat., Nat.
(6);
6
,
602
(
1920
),
E.
Hille
,
J. Analyse Math.
23
,
147
(
1970
).
23.
V.
Marić
and
M.
Skendžić
,
Math. Balkanica
3
,
312
(
1973
).
24.
E. Hille, Ordinary Differential Equations in the Complex Domain (Wiley, New York, 1976), Sect. 12.4.
25.
E.
Herlt
,
Gen. Relativ. Gravit.
28
,
919
(
1996
).
26.
P.
Havas
,
Gen. Relativ. Gravit.
24
,
599
(
1992
).
27.
K. S.
Govinder
,
P. G. L.
Leach
, and
S. D.
Maharaj
,
Int. J. Theor. Phys.
34
,
625
(
1995
).
28.
F.
Bavaud
,
Rev. Mod. Phys.
63
,
129
(
1991
).
29.
P. Havas and H. Goenner, Spherically symmetric space–times with constant curvature scalar (unpublished).
30.
E. T. Whittaker, Analytical Dynamics, Sec. 48 (4th ed.), New York, 1944.
31.
J. D. Logan, Invariant Variational Principles (Academic, New York, 1977).
32.
B. A.
Huberman
and
J. P.
Crutchfield
,
Phys. Rev. Lett.
43
,
1743
(
1979
);
P.
Holmes
,
Philos. Trans. R. Soc. London, Ser. A
292
,
419
(
1979
).
33.
W.-H.
Steeb
and
A.
Kunick
,
Phys. Rev. A
25
,
2889
(
1982
).
34.
M.
Tabor
and
J.
Weiss
,
Phys. Rev. A
24
,
2157
(
1981
).
35.
F. B.
Pelap
and
T. C.
Kofane
,
Phys. Scr.
57
,
410
(
1998
).
36.
E.
Lidorikis
et al.,
Physica D
113
,
346
(
1998
).
37.
J. M.
Dixon
and
J. A.
Tuszynski
,
Phys. Rev. A
41
,
4166
(
1990
).
38.
E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, 7th ed. (Akad. Verlagsgesellschaft, Geest & Portig, Leipzig, 1961).
39.
Ph.
Rosenau
,
J. Non-Linear Mechanics
19
,
303
(
1984
).
40.
G. P.
Horedt
,
Astron. Astrophys.
160
,
148
(
1986
).
41.
James S.
Wong
,
SIAM Rev.
17
,
339
(
1975
).
42.
R. C.
Flagg
,
C. D.
Luning
, and
W. L.
Perry
,
J. Comput. Phys.
38
,
396
(
1980
).
43.
G. J.
Butler
and
L. H.
Erbe
,
Nonlinear Analysis
11
,
207
(
1987
).
44.
P. G.
Leach
,
J. Math. Phys.
26
,
2510
(
1985
).
45.
W.
Sarlet
and
L. Y.
Bahar
,
Int. J. Non-Linear Mech.
15
,
133
(
1980
).
46.
C. D.
Luning
and
W. L.
Perry
,
J. Math. Phys.
22
,
1591
(
1981
).
47.
M.
Aripov
and
DSh.
Eshmatov
,
Sov. Phys. Dokl.
34
,
789
(
1989
).
48.
V. R.
Gavrilov
and
V. N.
Melnikov
,
Theor. Math. Phys.
114
,
355
(
1998
).
49.
E. N.
Glass
and
G.
Szamosi
,
Phys. Rev.
35
,
1205
(
1987
).
50.
E. N.
Glass
and
G.
Szamosi
,
Phys. Rev.
39
,
1045
(
1989
).
51.
M. R.
Feix
and
H. R.
Lewis
,
J. Math. Phys.
26
,
68
(
1985
).
52.
Ji-Zhong-Xu
,
Intern. J. Theoret. Phys.
37
,
1151
(
1998
).
53.
M. F.
Bidaut-Véron
and
L.
Véron
,
Invent. Math.
106
,
489
(
1991
).
54.
L.
Cagnon
and
P.
Winternitz
,
Phys. Lett. A
134
,
276
(
1989
);
L.
Cagnon
and
P.
Winternitz
,
J. Phys. A
22
,
4877
(
1989
);
L.
Cagnon
and
P.
Winternitz
,
J. Phys. A
22
,
4895
(
1989
).
55.
P. P.
Banerji
and
G.
Cao
,
J. Phys. A
21
,
55
(
1989
).
56.
I. M. Ryshik and I. S. Gradstein, Tables of Series, Products and Integrals (Deutscher Verlag der Wissenschaften, Berlin, 1957).
57.
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists (Springer-Verlag, Berlin 1954).
58.
H.
Lemke
,
Sitzungsber. Berliner Math. Gesellsch.
18
,
26
(
1920
);
N. N. Bogoljubov und J. A. Mitroposlki, Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen (Akad. Verlagsgesellschaft, Berlin, 1965), p. 6.
59.
G. P. Flessas, in Finite dimensional integrable nonlinear dynamical systems, edited by P. G. L Leach and W. H. Steeb (World Scientific, Singapore, 1988), pp. 161–173.
This content is only available via PDF.
You do not currently have access to this content.